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Triple Integrals

1. (a) If U is any solid (in space), what does the triple integral

∫∫∫
U

1 dV represent? Why?

Solution. Remember that we are thinking of the triple integral

∫∫∫
U
f(x, y, z) dV as a limit of

Riemann sums, obtained from the following process:

1. Slice the solid U into small pieces.

2. In each piece, the value of f will be approximately constant, so multiply the value of f at any
point by the volume ∆V of the piece. (It’s okay to approximate the volume ∆V .)

3. Add up all of these products. (This is a Riemann sum.)

4. Take the limit of the Riemann sums as the volume of the pieces tends to 0.

Now, if f is just the function f(x, y, z) = 1, then in Step 2, we end up simply multiplying 1 by
the volume of the piece, which gives us the volume of the piece. So, in Step 3, when we add all
of these products up, we are just adding up the volume of all the small pieces, which gives the
volume of the whole solid.

So,

∫∫∫
U

1 dV represents the volume of the solid U .

(b) Suppose the shape of a solid object is described by the solid U , and f(x, y, z) gives the density
of the object at the point (x, y, z) in kilograms per cubic meter. What does the triple integral∫∫∫

U
f(x, y, z) dV represent? Why?

Solution. Following the process described in (a), in Step 2, we multiply the approximate density
of each piece by the volume of that piece, which gives the approximate mass of that piece. Adding
those up gives the approximate mass of the entire solid object, and taking the limit gives us the

exact mass of the solid object .

2. Let U be the solid tetrahedron bounded by the planes x = 0, y = 1, z = 0, and x + 2y + 3z = 8.
(The vertices of this tetrahedron are (0, 1, 0), (0, 1, 2), (6, 1, 0), and (0, 4, 0)). Write the triple integral∫∫∫

U
f(x, y, z) dV as an iterated integral.

Solution. We’ll do this in all 6 possible orders. Let’s do it by writing the outer integral first, which
means we think of slicing. There are three possible ways to slice: parallel to the yz-plane, parallel to
the xz-plane, and parallel to the xy-plane.

(a) Slice parallel to the yz-plane.

If we do this, we are slicing the interval [0, 6] on the x-axis, so the outer (single) integral will be∫ 6

0

something dx.

To write the inner two integrals, we look at a typical slice and describe it. When we do this, we
think of x as being constant (since, within a slice, x is constant). Here is a typical slice:
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x

y

z

H0, 1, 2L

H0, 4, 0L

H6, 1, 0L

H0, 1, 0L

Each slice is a triangle, with one edge on the plane y = 1, one edge on the plane z = 0, and one
edge on the plane x+2y+3z = 8. (Since we are thinking of x as being constant, we might rewrite
this last equation as 2y + 3z = 8− x.) Here’s another picture of the slice, in 2D:

y = 1 2y + 3z = 8 - x

H1, 0L

H1, ��������������
6 - x

3
L

H ��������������
8 - x

2
, 0L

y

z

Now, we write a (double) iterated integral that describes this region. This will make up the inner
two integrals of our final answer. There are two ways to do this:

i. If we slice vertically, we are slicing the interval
[
1, 8−x

2

]
on the y-axis, so the outer integral

(of the two we are working on) will be

∫ (8−x)/2

1

something dy. Each slice goes from z = 0 to

the line 2y + 3z = 8− x (since we’re trying to describe z within a vertical slice, we’ll rewrite

this as z = 8−x−2y
3 ), so the inner integral will be

∫ (8−x−2y)/3

0

f(x, y, z) dz. This gives us the

iterated integral

∫ 6

0

∫ (8−x)/2

1

∫ (8−x−2y)/3

0

f(x, y, z) dz dy dx .

ii. If we slice horizontally, we are slicing the interval
[
0, 6−x

3

]
on the z-axis, so the outer integral

(of the two we are working on) will be

∫ (6−x)/3

0

something dz. Each slice goes from y = 1 to

the line 2y + 3z = 8− x (since we are trying to describe y in a horizontal slice, we’ll rewrite

this as y = 8−x−3z
2 ), so the inner integral will be

∫ (8−x−3z)/2

1

f(x, y, z) dy. This gives the

final answer

∫ 6

0

∫ (6−x)/3

0

∫ (8−x−3z)/2

1

f(x, y, z) dy dz dx .

(b) Slice parallel to the xz-plane.

If we do this, we are slicing the interval [1, 4] on the y-axis. So, our outer (single) integral will be∫ 4

1

something dy. Each slice is a triangle with edges on the planes x = 0, z = 0, and x+2y+3z = 8

(or x + 3z = 8− 2y). Within a slice, y is constant, so we can just look at x and z:
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x + 3z = 8 - 2y

H8 - 2 y, 0L

H0, �������������������

8 - 2 y

3
L

H0, 0L x

z

Our inner two integrals will describe this region.

i. If we slice vertically, we are slicing the interval [0, 8− 2y] on the x-axis, so the outer integral

(of the two we’re working on) will be

∫ 8−2y

0

something dx. Each slice goes from z = 0 to

z = 8−2y−x
3 , which gives the iterated integral

∫ 4

1

∫ 8−2y

0

∫ (8−2y−x)/3

0

f(x, y, z) dz dx dy .

ii. If we slice horizontally, we are slicing the interval
[
0, 8−2y

3

]
on the z-axis, so the outer integral

(of the two we’re working on) will be

∫ (8−2y)/3

0

something dz. Each slice goes from x = 0 to

x = 8−2y−3z, which gives the iterated integral

∫ 4

1

∫ (8−2y)/3

0

∫ 8−2y−3z

0

f(x, y, z) dx dz dy .

(c) Slice parallel to the xy-plane.

If we do this, we are slicing the interval [0, 2] on the z-axis, so the outer (single) integral will be∫ 2

0

something dz. Each slice is a triangle with edges on the planes x = 0, y = 1, and x+2y+3z = 8

(or x + 2y = 8− 3z). Within a slice, z is constant, so we can just look at x and y:

y = 1

x + 2y = 8 - 3z

H0, 1L
H6 - 3z, 1L

H0, ������������������

8 - 3 z

2
L

x

y

Our inner two integrals will describe this region.

i. If we slice vertically, we are slicing the interval [0, 6− 3z] on the x-axis, so the outer integral

(of the two we’re working on) will be

∫ 6−3z

0

something dx. Each slice will go from y = 1 to

the line x + 2y = 8 − 3z (which we write as y = 8−3z−x
2 since we’re trying to describe y),

which gives us the final integral

∫ 2

0

∫ 6−3z

0

∫ (8−3z−x)/2

1

f(x, y, z) dy dx dz .

ii. If we slice horizontally, we are slicing the interval
[
1, 8−3z

2

]
on the y-axis, so the outer integral

3



(of the two we’re working on) will be

∫ (8−3z)/2

1

something dy. Each slice will go from x = 0

to x+ 2y = 8− 3z (which we write as x = 8− 3z− 2y since we’re trying to describe x), which

gives us the answer

∫ 2

0

∫ (8−3z)/2

1

∫ 8−3z−2y

0

f(x, y, z) dx dy dz .

3. Let U be the solid enclosed by the paraboloids z = x2 +y2 and z = 8−(x2 +y2). (Note: The paraboloids

intersect where z = 4.) Write

∫∫∫
U
f(x, y, z) dV as an iterated integral in the order dz dy dx.

x
y

z

Solution. We can either do this by writing the inner integral first or by writing the outer integral
first. In this case, it’s probably easier to write the inner integral first, but we’ll show both methods.

• Writing the inner integral first:

We are asked to have our inner integral be with respect to z, so we want to describe how z varies
along a vertical line (where x and y are fixed) to write the inner integral. We can see that, along
any vertical line through the solid, z goes from the bottom paraboloid (z = x2 + y2) to the top

paraboloid (z = 8− (x2 + y2)), so the inner integral will be

∫ 8−(x2+y2)

x2+y2

f(x, y, z) dz.

To write the outer two integrals, we want to describe the projection of the region onto the xy-
plane. (A good way to think about this is, if we moved our vertical line around to go through
the whole solid, what x and y would we hit? Alternatively, if we could stand at the “top” of the
z-axis and look “down” at the solid, what region would we see?) In this case, the widest part of
the solid is where the two paraboloids intersect, which is z = 4 and x2 + y2 = 4. Therefore, the
projection is the region x2 + y2 ≤ 4, a disk in the xy-plane:

-2 2
x

-2

2
y

We want to write an iterated integral in the order dy dx to describe this region, which means we

should slice vertically. We slice [−2, 2] on the x-axis, so the outer integral will be

∫ 2

−2
something dx.
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Along each slice, y goes from the bottom of the circle (y = −
√

4− x2) to the top (y =
√

4− x2),

so we get the iterated integral

∫ 2

−2

∫ √4−x2

−
√
4−x2

∫ 8−(x2+y2)

x2+y2

f(x, y, z) dz dy dx .

• Writing the outer integral first:

We are asked to have our outer integral be with respect to x, so we want to make slices parallel
to the yz-plane. This amounts to slicing the interval [−2, 2] on the x-axis, so the outer integral

will be

∫ 2

−2
something dx.

Each slice is a region bounded below by z = x2 + y2 and above by z = (8− x2)− y2. (Remember
that, within a slice, x is constant.) Note that these curves intersect where x2 +y2 = (8−x2)−y2,
or 2y2 = 8− 2x2. This happens at y = ±

√
4− x2. At either of these y-values, z = 4. So, here is

a picture of the region:

z = 8 - x2
- y2

z = x2
+ y2

-
"##############

4 - x2 "##############
4 - x2

y

4

z

The two integrals describing this region are supposed to be in the order dz dy, which means we
are slicing vertically. Slicing vertically amounts to slicing the interval [−

√
4− x2,

√
4− x2] on

the y-axis, so the outer integral (of these two integrals) will be

∫ √4−x2

−
√
4−x2

something dy. Along

each vertical slice, z goes from x2 + y2 to 8 − (x2 + y2), so we get the final iterated integral∫ 2

−2

∫ √4−x2

−
√
4−x2

∫ 8−(x2+y2)

x2+y2

f(x, y, z) dz dy dx .

4. In this problem, we’ll look at the iterated integral

∫ 1

0

∫ z

0

∫ 1

y2

f(x, y, z) dx dy dz.

(a) Rewrite the iterated integral in the order dx dz dy.

Solution. One strategy is to draw the solid region of integration and then write the integral as
we did in #3. However, drawing the solid region of integration is rather challenging, so here’s
another approach.

Remember that we can think of a triple integral as either a single integral of a double integral or a
double integral of a single integral, and we know how to change the order of integration in a double
integral. (See, for instance, #5 on the worksheet “Double Integrals over General Regions”.) This
effectively means that we can change the order of the inner two integrals by thinking of them
together as a double integral, or we can change the order of the outer two integrals by thinking
of them together as a double integral.
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For this question, we just need to change the order of the outer two integrals, so we focus on those.

They are

∫ 1

0

∫ z

0

stuff dy dz.(1) Since this integral is dy dz, we should visualize the yz-plane. The

fact that the outer integral is

∫ 1

0

something dz tells us that we are slicing the interval [0, 1] on

the z-axis. The fact that the inner integral is

∫ z

0

stuff dy tells us that each slice starts at y = 0

and goes to y = z. So, our region (with horizontal slices) looks like the picture on the left:

z = y

1
y

1
z

z = y

1
y

1
z

To change the order of integration, we want to use vertical slices (the picture on the right). Now,

we are slicing the interval [0, 1] on the y-axis, so the outer integral will be

∫ 1

0

something dy. Each

slice has its bottom edge on z = y and its top edge on z = 1, so we rewrite

∫ 1

0

∫ z

0

stuff dy dz as∫ 1

0

∫ 1

y

stuff dz dy. Remembering that “stuff” was the inner integral

∫ 1

y2

f(x, y, z) dx, this gives

us the iterated integral

∫ 1

0

∫ 1

y

∫ 1

y2

f(x, y, z) dx dz dy .

(b) Rewrite the iterated integral in the order dz dy dx.

Solution. Let’s continue from (a). As explained there, we can change the order of the outer
two integrals or of the inner two integrals. From (a), we have our iterated integral in the order
dx dz dy. If we change the order of the inner two integrals, then we’ll have our iterated integral
in the order dz dx dy. If we then change the order of the outer two integrals of this, we’ll get it
into the order dz dy dx. So, we really have two steps.

• Step 1: Change the order of the inner double integral from (a).

We had

∫ 1

0

∫ 1

y

∫ 1

y2

f(x, y, z) dx dz dy, so we are going to focus on the inner double integral∫ 1

y

∫ 1

y2

f(x, y, z) dx dz. Remember that, since this is the inner double integral and y is the

outer variable, we now think of y as being a constant.(2) Then, the region of integration of

the integral

∫ 1

y

∫
y2

1f(x, y, z) dz dz is just a rectangle (sliced horizontally):

(1)Here, “stuff” is the inner integral

∫ 1

y2
f(x, y, z) dx.

(2)In fact, we should think of y as being a constant between 0 and 1, since the outer integral has y going from 0 to 1.

6



1y2
x

1

y

z

If we change to slicing horizontally, we rewrite this as

∫ 1

y2

∫ 1

y

f(x, y, z) dz dx.(3) Putting the

outer integral back, we get the iterated integral

∫ 1

0

∫ 1

y2

∫ 1

y

f(x, y, z) dz dx dy.

• Step 2: Change the order of the outer double integral.

Now, we’re working with

∫ 1

0

∫ 1

y2

∫ 1

y

f(x, y, z) dz dx dy, and we want to change the order of

the outer double integral, which is

∫ 1

0

∫ 1

y2

stuff dx dy with “stuff” being the inner integral∫ 1

y

f(x, y, z) dz. The region of integration of

∫ 1

0

∫ 1

y2

stuff dx dy looks like this (with horizontal

slices):

x = y2

1
x

1
y

If we change to slicing vertically, then the integral becomes

∫ 1

0

∫ √x

0

stuff dy dx. Remembering

that “stuff” was the inner integral, we get our final answer

∫ 1

0

∫ √x

0

∫ 1

y

f(x, y, z) dz dy dx .

5. Let U be the solid contained in x2 + y2 − z2 = 16 and lying between the planes z = −3 and z = 3.
Sketch U and write an iterated integral which expresses its volume. In which orders of integration can
you write just a single iterated integral (as opposed to a sum of iterated integrals)?

Solution. Here is a picture of U :(4)

(3)Another way of thinking about it is that we’re using Fubini’s Theorem.
(4)To remember how to sketch things like this, look back at #3 of the worksheet “Quadric Surfaces”.
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x
y

z

By #1(a), we know that a triple integral expressing the volume of U is

∫∫∫
U

1 dV . We are asked to

rewrite this as an iterated integral. Let’s think about slicing the solid (which means we’ll write the
outer integral first). If we slice parallel to the xy-plane, then we are really slicing [−3, 3] on the z-axis,

and the outer integral is

∫ 3

−3
something dz.

We use our inner two integrals to describe a typical slice. Each slice is just the disk enclosed by the
circle x2 + y2 = z2 + 16, which is a circle of radius

√
z2 + 16:

-
"################

z2
+ 16 "################

z2
+ 16

x

-
"################

z2
+ 16

"################
z2
+ 16

y

We can slice this region vertically or horizontally; let’s do it vertically. This amounts to slicing[
−
√
z2 + 16,

√
z2 + 16

]
on the x-axis, so the outer integral is

∫ √z2+16

−
√
z2+16

something dx. Along each slice,

y goes from the bottom of the circle (y = −
√
z2 + 16− x2) to the top of the circle (y =

√
z2 + 16− x2).

So, the inner integral is

∫ √z2+16−x2

−
√
z2+16−x2

f(x, y, z) dy.

Putting this all together, we get the iterated integral

∫ 3

−3

∫ √z2+16

−
√
z2+16

∫ √z2+16−x2

−
√
z2+16−x2

1 dy dx dz .

We are also asked in which orders we can write just a single iterated integral. Clearly, we’ve done so
with the order dy dx dz. We also could have with dx dy dz, since that would just be slicing the same
disk horizontally.

If we had dx or dy as our outer integral, then we would need to write multiple integrals. For instance,
if we slice the hyperboloid parallel to the yz-plane, some slices would look like this:

8



x
y

z

y

z

We would need to write a sum of integrals to describe such a slice. So, we can write a single iterated

integral only in the orders dy dx dz and dx dy dz .

9



Double integrals

Notice: this material must not be used as a substitute for attending
the lectures

1



0.1 What is a double integral?

Recall that a single integral is something of the form∫ b

a
f(x) dx

A double integral is something of the form∫ ∫
R

f(x, y) dx dy

where R is called the region of integration and is a region in the (x, y) plane. The
double integral gives us the volume under the surface z = f(x, y), just as a single
integral gives the area under a curve.

0.2 Evaluation of double integrals

To evaluate a double integral we do it in stages, starting from the inside and working
out, using our knowledge of the methods for single integrals. The easiest kind of
region R to work with is a rectangle. To evaluate∫ ∫

R
f(x, y) dx dy

proceed as follows:

• work out the limits of integration if they are not already known

• work out the inner integral for a typical y

• work out the outer integral

0.3 Example

Evaluate ∫ 2

y=1

∫ 3

x=0
(1 + 8xy) dx dy

Solution. In this example the “inner integral” is
∫ 3
x=0(1 + 8xy) dx with y treated as a

constant.

integral =
∫ 2

y=1


∫ 3

x=0
(1 + 8xy) dx︸ ︷︷ ︸

work out treating y as constant

 dy

=
∫ 2

y=1

[
x +

8x2y

2

]3

x=0

dy

=
∫ 2

y=1
(3 + 36y) dy

2



=

[
3y +

36y2

2

]2

y=1

= (6 + 72)− (3 + 18)

= 57

0.4 Example

Evaluate ∫ π/2

0

∫ 1

0
y sin x dy dx

Solution.

integral =
∫ π/2

0

(∫ 1

0
y sin x dy

)
dx

=
∫ π/2

0

[
y2

2
sin x

]1

y=0

dx

=
∫ π/2

0

1
2
sin x dx

=
[
−1

2
cos x

]π/2

x=0
= 1

2

0.5 Example

Find the volume of the solid bounded above by the plane z = 4 − x − y and below
by the rectangle R = {(x, y) : 0 ≤ x ≤ 1 0 ≤ y ≤ 2}.
Solution. The volume under any surface z = f(x, y) and above a region R is given by

V =
∫ ∫

R
f(x, y) dx dy

In our case

V =
∫ 2

0

∫ 1

0
(4− x− y) dx dy

=
∫ 2

0

[
4x− 1

2
x2 − yx

]1
x=0

dy =
∫ 2

0
(4− 1

2
− y) dy

=

[
7y

2
− y2

2

]2

y=0

= (7− 2)− (0) = 5

The double integrals in the above examples are the easiest types to evaluate because
they are examples in which all four limits of integration are constants. This happens
when the region of integration is rectangular in shape. In non-rectangular regions
of integration the limits are not all constant so we have to get used to dealing with
non-constant limits. We do this in the next few examples.
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0.6 Example

Evaluate ∫ 2

0

∫ x

x2
y2x dy dx

Solution.

integral =
∫ 2

0

∫ x

x2
y2x dy dx

=
∫ 2

0

[
y3x

3

]y=x

y=x2

dx

=
∫ 2

0

(
x4

3
− x7

3

)
dx =

[
x5

15
− x8

24

]2

0

=
32

15
− 256

24
= −128

15

0.7 Example

Evaluate ∫ π

π/2

∫ x2

0

1

x
cos

y

x
dy dx

Solution. Recall from elementary calculus the integral
∫

cos my dy = 1
m

sin my for m
independent of y. Using this result,

integral =
∫ π

π/2

1

x

sin y
x

1
x

y=x2

y=0

dx

=
∫ π

π/2
sin x dx = [− cos x]πx=π/2 = 1

0.8 Example

Evaluate ∫ 4

1

∫ √
y

0
ex/

√
y dx dy

Solution.

integral =
∫ 4

1

[
ex/

√
y

1/
√

y

]x=
√

y

x=0

dy

=
∫ 4

1
(
√

ye−√
y) dy = (e− 1)

∫ 4

1
y1/2 dy

= (e− 1)

[
y3/2

3/2

]4

y=1

=
2

3
(e− 1)(8− 1)

=
14

3
(e− 1)

4



0.9 Evaluating the limits of integration

When evaluating double integrals it is very common not to be told the limits of
integration but simply told that the integral is to be taken over a certain specified
region R in the (x, y) plane. In this case you need to work out the limits of integration
for yourself. Great care has to be taken in carrying out this task. The integration
can in principle be done in two ways: (i) integrating first with respect to x and then
with respect to y, or (ii) first with respect to y and then with respect to x. The
limits of integration in the two approaches will in general be quite different, but both
approaches must yield the same answer. Sometimes one way round is considerably
harder than the other, and in some integrals one way works fine while the other leads
to an integral that cannot be evaluated using the simple methods you have been
taught. There are no simple rules for deciding which order to do the integration in.

0.10 Example

Evaluate ∫ ∫
D
(3− x− y) dA [dA means dxdy or dydx]

where D is the triangle in the (x, y) plane bounded by the x-axis and the lines y = x
and x = 1.
Solution. A good diagram is essential.

Method 1 : do the integration with respect to x first. In this approach we select a typical
y value which is (for the moment) considered fixed, and we draw a horizontal
line across the region D; this horizontal line intersects the y axis at the typical
y value. Find out the values of x (they will depend on y) where the horizontal
line enters and leaves the region D (in this problem it enters at x = y and
leaves at x = 1). These values of x will be the limits of integration for the inner
integral. Then you determine what values y has to range between so that the
horizontal line sweeps the entire region D (in this case y has to go from 0 to 1).
This determines the limits of integration for the outer integral, the integral with
respect to y. For this particular problem the integral becomes∫ ∫

D
(3− x− y) dA =

∫ 1

0

∫ 1

y
(3− x− y) dx dy

=
∫ 1

0

[
3x− x2

2
− yx

]x=1

x=y

dy

=
∫ 1

0

((
3− 1

2
− y

)
−
(

3y − y2

2
− y2

))
dy

=
∫ 1

0

(
5

2
− 4y +

3

2
y2
)

dy =

[
5y

2
− 2y2 +

y3

2

]y=1

y=0

=
5

2
− 2 +

1

2
= 1
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Method 2 : do the integration with respect to y first and then x. In this approach we
select a “typical x” and draw a vertical line across the region D at that value
of x.

Vertical line enters D at y = 0 and leaves at y = x. We then need to let x
go from 0 to 1 so that the vertical line sweeps the entire region. The integral
becomes∫ ∫

D
(3− x− y) dA =

∫ 1

0

∫ x

0
(3− x− y) dy dx

=
∫ 1

0

[
3y − xy − y2

2

]y=x

y=0

dx

=
∫ 1

0

(
3x− x2 − x2

2

)
dx =

∫ 1

0

(
3x− 3x2

2

)
dx

=

[
3x2

2
− x3

2

]1

x=0

= 1

Note that Methods 1 and 2 give the same answer. If they don’t it means something
is wrong.

0.11 Example

Evaluate ∫ ∫
D
(4x + 2) dA

where D is the region enclosed by the curves y = x2 and y = 2x.
Solution. Again we will carry out the integration both ways, x first then y, and then
vice versa, to ensure the same answer is obtained by both methods.

Method 1 : We do the integration first with respect to x and then with respect to y. We
shall need to know where the two curves y = x2 and y = 2x intersect. They
intersect when x2 = 2x, i.e. when x = 0, 2. So they intersect at the points (0, 0)
and (2, 4).

For a typical y, the horizontal line will enter D at x = y/2 and leave at x =
√

y.
Then we need to let y go from 0 to 4 so that the horizontal line sweeps the
entire region. Thus∫ ∫

D
(4x + 2) dA =

∫ 4

0

∫ x=
√

y

x=y/2
(4x + 2) dx dy

=
∫ 4

0

[
2x2 + 2x

]x=
√

y

x=y/2
dy =

∫ 4

0

(
(2y + 2

√
y)−

(
y2

2
+ y

))
dy

=
∫ 4

0

(
y + 2y1/2 − y2

2

)
dy =

[
y2

2
+

2y3/2

3/2
− y3

6

]4

0

= 8

6



Method 2 : Integrate first with respect to y and then x, i.e. draw a vertical line across D
at a typical x value. Such a line enters D at y = x2 and leaves at y = 2x. The
integral becomes∫ ∫

D
(4x + 2) dA =

∫ 2

0

∫ 2x

x2
(4x + 2) dy dx

=
∫ 2

0
[4xy + 2y]y=2x

y=x2 dx

=
∫ 2

0

((
8x2 + 4x

)
−
(
4x3 + 2x2

))
dx

=
∫ 2

0
(6x2 − 4x3 + 4x) dx =

[
2x3 − x4 + 2x2

]2
0

= 8

The example we have just done shows that it is sometimes easier to do it one way
than the other. The next example shows that sometimes the difference in effort is
more considerable. There is no general rule saying that one way is always easier than
the other; it depends on the individual integral.

0.12 Example

Evaluate ∫ ∫
D
(xy − y3) dA

where D is the region consisting of the square {(x, y) : −1 ≤ x ≤ 0, 0 ≤ y ≤ 1}
together with the triangle {(x, y) : x ≤ y ≤ 1, 0 ≤ x ≤ 1}.

Method 1 : (easy). integrate with respect to x first. A diagram will show that x goes
from −1 to y, and then y goes from 0 to 1. The integral becomes∫ ∫

D
(xy − y3) dA =

∫ 1

0

∫ y

−1
(xy − y3) dx dy

=
∫ 1

0

[
x2

2
y − xy3

]x=y

x=−1

dy

=
∫ 1

0

((
y3

2
− y4

)
− (1

2
y + y3)

)
dy

=
∫ 1

0

(
−y3

2
− y4 − 1

2
y

)
dy =

[
−y4

8
− y5

5
− y2

4

]1

y=0

= −23

40

Method 2 : (harder). It is necessary to break the region of integration D into two sub-
regions D1 (the square part) and D2 (triangular part). The integral over D is
given by ∫ ∫

D
(xy − y3) dA =

∫ ∫
D1

(xy − y3) dA +
∫ ∫

D2

(xy − y3) dA

7



which is the analogy of the formula
∫ c
a f(x) dx =

∫ b
a f(x) dx +

∫ c
b f(x) dx for

single integrals. Thus∫ ∫
D
(xy − y3) dA =

∫ 0

−1

∫ 1

0
(xy − y3) dy dx +

∫ 1

0

∫ 1

x
(xy − y3) dy dx

=
∫ 0

−1

[
xy2

2
− y4

4

]1

y=0

dx +
∫ 1

0

[
xy2

2
− y4

4

]1

y=x

dx

=
∫ 0

−1

(
1
2
x− 1

4

)
dx +

∫ 1

0

((
x

2
− 1

4

)
−
(

x3

2
− x4

4

))
dx

=

[
x2

4
− x

4

]0

−1

+

[
x2

4
− x

4
− x4

8
+

x5

20

]1

0

= −1
2
− 3

40
= −23

40

In the next example the integration can only be done one way round.

0.13 Example

Evaluate ∫ ∫
D

sin x

x
dA

where D is the triangle {(x, y) : 0 ≤ y ≤ x, 0 ≤ x ≤ π}.
Solution. Let’s try doing the integration first with respect to x and then y. This gives∫ ∫

D

sin x

x
dA =

∫ π

0

∫ π

y

sin x

x
dx dy

but we cannot proceed because we cannot find an indefinite integral for sin x/x. So,
let’s try doing it the other way. We then have∫ ∫

D

sin x

x
dA =

∫ π

0

∫ x

0

sin x

x
dy dx

=
∫ π

0

[
sin x

x
y
]x
y=0

dx =
∫ π

0
sin x dx

= [− cos x]π0 = 1− (−1) = 2

0.14 Example

Find the volume of the tetrahedron that lies in the first octant and is bounded by the
three coordinate planes and the plane z = 5− 2x− y.
Solution. The given plane intersects the coordinate axes at the points (5

2
, 0, 0), (0, 5, 0)

and (0, 0, 5). Thus, we need to work out the double integral∫ ∫
D
(5− 2x− y) dA
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where D is the triangle in the (x, y) plane with vertices (x, y) = (0, 0), (5
2
, 0) and

(0, 5). It is a good idea to draw another diagram at this stage showing just the region
D in the (x, y) plane. Note that the equation of the line joining the points (5

2
, 0) and

(0, 5) is y = −2x + 5. Then:

volume =
∫ ∫

D
(5− 2x− y) dA =

∫ 5

0

∫ (5−y)/2

0
(5− 2x− y) dx dy

=
∫ 5

0

[
5x− x2 − yx

]x=(5−y)/2

x=0
dy

=
∫ 5

0

[
5
(

5− y

2

)
−
(

5− y

2

)2

− y
(

5− y

2

)]
dy

=
∫ 5

0

(
25

4
− 5y

2
+

y2

4

)
dy

=

[
25y

4
− 5y2

4
+

y3

12

]5

0

=
125

12

0.15 Changing variables in a double integral

We know how to change variables in a single integral:∫ b

a
f(x) dx =

∫ B

A
f(x(u))

dx

du
du

where A and B are the new limits of integration.
For double integrals the rule is more complicated. Suppose we have∫ ∫

D
f(x, y) dx dy

and want to change the variables to u and v given by x = x(u, v), y = y(u, v). The
change of variables formula is∫ ∫

D
f(x, y) dx dy =

∫ ∫
D∗

f(x(u, v), y(u, v))|J | du dv (0.1)

where J is the Jacobian, given by

J =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

and D∗ is the new region of integration, in the (u, v) plane.

0.16 Transforming a double integral into polars

A very commonly used substitution is conversion into polars. This substitution is
particularly suitable when the region of integration D is a circle or an annulus (i.e.
region between two concentric circles). Polar coordinates r and θ are defined by

x = r cos θ, y = r sin θ
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The variables u and v in the general description above are r and θ in the polar
coordinates context and the Jacobian for polar coordinates is

J =
∂x

∂r

∂y

∂θ
− ∂x

∂θ

∂y

∂r
= (cos θ)(r cos θ)− (−r sin θ)(sin θ)

= r(cos2 θ + sin2 θ) = r

So |J | = r and the change of variables rule (0.1) becomes∫ ∫
D

f(x, y) dx dy =
∫ ∫

D∗
f(r cos θ, r sin θ) r dr dθ

0.17 Example

Use polar coordinates to evaluate ∫ ∫
D

xy dx dy

where D is the portion of the circle centre 0, radius 1, that lies in the first quadrant.
Solution. For the portion in the first quadrant we need 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π/2.
These inequalities give us the limits of integration in the r and θ variables, and these
limits will all be constants.
With x = r cos θ, y = r sin θ the integral becomes∫ ∫

D
xy dx dy =

∫ π/2

0

∫ 1

0
r2 cos θ sin θ r dr dθ

=
∫ π/2

0

[
r4

4
cos θ sin θ

]1

r=0

dθ

=
∫ π/2

0

1

4
sin θ cos θ dθ =

∫ π/2

0

1

8
sin 2θ dθ

=
1

8

[
−cos 2θ

2

]π/2

0

=
1

8

0.18 Example

Evaluate ∫ ∫
D

e−(x2+y2) dx dy

where D is the region between the two circles x2 + y2 = 1 and x2 + y2 = 4.
Solution. It is not feasible to attempt this integral by any method other than trans-
forming into polars.
Let x = r cos θ, y = r sin θ. In terms of r and θ the region D between the two circles
is described by 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, and so the integral becomes∫ ∫

D
e−(x2+y2) dx dy =

∫ 2π

0

∫ 2

1
e−r2

r dr dθ
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=
∫ 2π

0

[
−1

2
e−r2

]2
r=1

dθ

=
∫ 2π

0

(
−1

2
e−4 + 1

2
e−1

)
dθ

= π(e−1 − e−4)

0.19 Example: integrating e−x2

The function e−x2
has no elementary antiderivative. But we can evaluate

∫∞
−∞ e−x2

dx
by using the theory of double integrals.(∫ ∞

−∞
e−x2

dx
)2

=
(∫ ∞

−∞
e−x2

dx
)(∫ ∞

−∞
e−x2

dx
)

=
(∫ ∞

−∞
e−x2

dx
)(∫ ∞

−∞
e−y2

dy
)

=
∫ ∞

−∞
e−y2

∫ ∞

−∞
e−x2

dx dy

=
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy

Now transform to polar coordinates x = r cos θ, y = r sin θ. The region of integration
is the whole (x, y) plane. In polar variables this is given by 0 ≤ r < ∞, 0 ≤ θ ≤ 2π.
Thus (∫ ∞

−∞
e−x2

dx
)2

=
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy

=
∫ 2π

0

∫ ∞

0
e−r2

r dr dθ

=
∫ 2π

0

[
−1

2
e−r2

]r=∞
r=0

dθ

=
∫ 2π

0

1
2
dθ = π

We have shown that (∫ ∞

−∞
e−x2

dx
)2

= π

Hence ∫ ∞

−∞
e−x2

dx =
√

π.

The above integral is very important in numerous applications.

0.20 Other substitutions

So far we have only illustrated how to convert a double integral into polars. We
will now illustrate some examples of double integrals that can be evaluated by other
substitutions. Unlike single integrals, for a double integral the choice of substitution
is often dictated not only by what we have in the integrand but also by the shape of
the region of integration.
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0.21 Example

Evaluate ∫ ∫
D
(x + y)2 dx dy

where D is the parallelogram bounded by the lines x + y = 0, x + y = 1, 2x− y = 0
and 2x− y = 3.
Solution. (A diagram to show the region D will be useful).
In an example like this the boundary curves of D can suggest what substitution to
use. So let us try

u = x + y, v = 2x− y.

In these new variables the region D is described by

0 ≤ u ≤ 1, 0 ≤ v ≤ 3.

We need to work out the Jacobian

J =

∣∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣
To work this out we need x and y in terms of u and v. From the equations u = x+ y,
v = 2x− y we get

x =
1

3
(u + v), y =

2

3
u− 1

3
v

Therefore

J =

∣∣∣∣∣ 1
3

1
3

2
3
−1

3

∣∣∣∣∣ = −1

9
− 2

9
= −1

3

and so |J | = 1
3

(recall it is |J | and not J that we put into the integral). Therefore the
substitution formula gives

∫ ∫
D
(x + y)2 dx dy =

∫ 3

0

∫ 1

0
u2 1

3︸︷︷︸
=|J |

du dv =
∫ 3

0

[
u3

9

]1

0

dv =
∫ 3

0

1

9
dv =

1

3
.

0.22 Example

Let D be the region in the first quadrant bounded by the hyperbolas xy = 1, xy = 9
and the lines y = x, y = 4x. Evaluate∫ ∫

D

(√
y

x
+
√

xy
)

dx dy

Solution. A diagram showing D is useful. We make the substitution

xy = u2,
y

x
= v2.
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We will need x and y in terms of u and v. By multiplying the above equations we
get y2 = u2v2. Hence y = uv and x = u/v. In the (u, v) variables the region D is
described by

1 ≤ u ≤ 3, 1 ≤ v ≤ 2.

The Jacobian is

J =

∣∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣∣ 1

v
− u

v2

v u

∣∣∣∣∣ = u

v
+

u

v
=

2u

v

Therefore∫ ∫
D

(√
y

x
+
√

xy
)

dx dy

=
∫ ∫

(v + u)|J | du dv =
∫ 2

1

∫ 3

1
(v + u)

(
2u

v

)
du dv

=
∫ 2

1

∫ 3

1

(
2u +

2u2

v

)
du dv =

∫ 2

1

[
u2 +

2u3

3v

]u=3

u=1

dv

=
∫ 2

1

{(
9 +

18

v

)
−
(
1 +

2

3v

)}
dv =

[
8v +

52

3
ln v

]2
1

= 8 +
52

3
ln 2.

0.23 Application of double integrals: centres of gravity

We will show how double integrals may be used to find the location of the centre
of gravity of a two-dimensional object. Mathematically speaking, a plate is a thin
2-dimensional distribution of matter considered as a subset of the (x, y) plane. Let

σ = mass per unit area

This is the definition of density for two-dimensional objects. If the plate is all made
of the same material (a sheet of metal, perhaps) then σ would be a constant, the value
of which would depend on the material of which the plate is made. However, if the
plate is not all made of the same material then σ could vary from point to point on
the plate and therefore be a function of x and y, σ(x, y). For some objects, part of the
object may be made of one material and part of it another (some currencies have coins
that are like this). But σ(x, y) could quite easily vary in a much more complicated
way (a pizza is a simple example of an object with an uneven distribution of matter).

The intersection of the two thin strips defines a small rectangle of length δx and width
δy. Thus

mass of little rectangle = (mass per unit area)(area)
= σ(x, y) dx dy

Therefore the total mass of the plate D is

M =
∫ ∫

D
σ(x, y) dx dy.

Suppose you try to balance the plate D on a pin. The centre of mass of the plate is
the point where you would need to put the pin. It can be shown that the coordinates
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(x̄, ȳ) of the centre of mass are given by

x̄ =

∫ ∫
D
x σ(x, y) dA∫ ∫

D
σ(x, y) dA

, ȳ =

∫ ∫
D
y σ(x, y) dA∫ ∫

D
σ(x, y) dA

(0.2)

0.24 Example

A homogeneous triangle with vertices (0, 0), (1, 0) and (1, 3). Find the coordinates of
its centre of mass.
[‘Homogeneous’ means the plate is all made of the same material which is uniformly
distributed across it, so that σ(x, y) = σ, a constant.]
Solution. A diagram of the triangle would be useful. With σ constant, we have

x̄ =

∫ ∫
D
σx dA∫ ∫

D
σ dA

=
σ
∫ 1

0

∫ 3x

0
x dy dx

σ
∫ 1

0

∫ 3x

0
dy dx

=

∫ 1

0
[xy]y=3x

y=0 dx∫ 1

0
[y]y=3x

y=0 dx

=

∫ 1

0
3x2 dx∫ 1

0
3x dx

=
1

3/2
=

2

3

and

ȳ =

∫ ∫
D
σy dA∫ ∫

D
σ dA

=
σ
∫ 1

0

∫ 3x

0
y dy dx

σ
∫ 1

0

∫ 3x

0
dy dx

=

∫ 1

0

[
y2

2

]y=3x

y=0

dx

∫ 1

0
[y]y=3x

y=0 dx

=

∫ 1

0

9x2

2
dx∫ 1

0
3x dx

=
3/2

3/2
= 1.

So the centre of mass is at (x̄, ȳ) = (2
3
, 1).

0.25 Example

Find the centre of mass of a circle, centre the origin, radius 1, if the right half is made
of material twice as heavy as the left half.
Solution. By symmetry, it is clear that the centre of mass will be somewhere on the
x-axis, and so ȳ = 0. In order to model the fact that the right half is twice as heavy,
we can take

σ(x, y) =

{
2σ x > 0
σ x < 0

with the σ in the right hand side of the above expression being any positive constant.
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From the general formula,

x̄ =

∫ ∫
D
x σ(x, y) dA∫ ∫

D
σ(x, y) dA

. (0.3)

Let us work out the integral in the numerator first. We shall need to break it up as
follows∫ ∫

D
xσ(x, y) dA =

∫ ∫
right half

+
∫ ∫

left half
=
∫ ∫

right
2σx dA +

∫ ∫
left

σx dA

The circular geometry suggests we convert to plane polars, x = r cos θ, y = r sin θ.
Recall that, in this coordinate system, dA = r dr dθ. The right half of the circle
is described by −π/2 ≤ θ ≤ π/2, 0 ≤ r ≤ 1, and the left half similarly but with
π/2 ≤ θ ≤ 3π/2. Thus

∫ ∫
D

xσ(x, y) dA =
∫ π/2

−π/2

∫ 1

0
2σ(r cos θ) r dr dθ +

∫ 3π/2

π/2

∫ 1

0
σ(r cos θ) r dr dθ

= 2σ
∫ π/2

−π/2

[
r3

3
cos θ

]r=1

r=0

dθ + σ
∫ 3π/2

π/2

[
r3

3
cos θ

]r=1

r=0

dθ

=
2σ

3

∫ π/2

−π/2
cos θ dθ +

σ

3

∫ 3π/2

π/2
cos θ dθ

=
4σ

3
− 2σ

3
=

2σ

3
.

Finally, we work out the denominator in (0.3):∫ ∫
D

σ(x, y) dA =
∫ ∫

left half
σ dA +

∫ ∫
right half

2σ dA

= σ
∫ ∫

left half
dA + 2σ

∫ ∫
right half

dA

= σ(area of left half) + 2σ(area of right half)

= σ(π/2) + 2σ(π/2)

=
3σπ

2

Therefore the x coordinate of the centre of mass of the object is

x̄ =
2σ/3

3σπ/2
=

4

9π
.
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1

0

x nn e x dx



   



1

n

n

x

x

u x

du nx

dv e

v e











 

 

  1

0
0

1

0

0

n x n x

x n

x e n x e dx

n e x dx

n n




  



 

  

 

 



  

1n n n     

(3.)When n is +ve integer 

1 !

1

n n

n n n

  

   
 

   

 

 

. 1 1

. 1 .........................2.1 1

. 1 .........................2.1

!

n n n

n n

n n

n

   

  

 



 

(4.) 
2 2 1

0

2 t nn e t dt



     

Put   
2

2

x t

dx xdt




               when 

0, 0

,

x t

x t

 

 
 

 
1

2

0

.2
n

tn e t tdt




    

2 2 1

0

2 t ne t dt



    

2 2 1

0

2 t nn e t dt



     

BETA FUNCTION: 



                                 The beta function is defined as 
   

11

1

,

0

1 , 0, 0.

n

m

m n
x x dx m n



     

Put 1x y  , 

   
1

11

,

0

1
mn

m n
y y dy

   


 ,m n

  ,n m
  

Put   
2sin

2sin cos

x

dx d



  




 

When   

0, 0

1,
2

x

x






 

 
 

     
2

1 1
2 2

,

0

sin cos 2sin cos
m n

m n



    
 

   

           =
2

2 1 2 1

0

2 sin cosm n d



   

  

RELATION BETWEEN BETA    AND GAMMA    FUNCTION: 

 ,m n
 

   

 

m n

m n

 

 
 

We know that  1

0

t mm e t dt



     

     Put
2

2

t x

dt xdx




 

2 2 1

0

2 x mm e x dx



     

2 2 1

0

2 x nn e y dx



     



2 22 1 2 1

0 0

4 x m y nm n e x dx e y dy

 

         

 2 2
2 1 2 1

0 0

4
x y m ne x y dy

 
       

        Changing polar co-ordinates          
cos , sinx r y r

dxdy rdrd

 



 


 

   r varies from 0to  

  varies from 0
2

to


 

=    
2

2
2 1 2 1

0 0

4 cos sin
m nrm n e r r rdrd



  


       

=
 2

2
2 1 2 1 2 1

0 0

4 cos sin
m nr m ne r drd



  


   

   

=
 2

2
2 12 1 2 1

0 0

2 cos sin .2
m nm n rd e r dr



  


   

   

m n  =
 ,

.
m n

m n    

 ,m n

m n

m n


 
 

 
 

 

Prove that 1

0

ax ne x dx



 

 = / nn a   ,when  a  and n are  positive. Hence find the value of 

 
1

11

0

log 1/
pqx x dx
    . 

Sol:                        we know that 1

0

ax ne x dx n



     

                             Put, ax = t 

                                    dx= dt/ a 

1

0

ax ne x dx



 

 =    
1

0

/ /
nte t a dt a




  

                     = 1

0

1/ n t na e t dt



 

  

                     = / nn a  

 
1

11

0

log 1/
pqx x dx
    =    

0
1 1q y p ye y e dy

   



  



                                                                                                                     Put, 1/x= ye  
yx e ydx e dy    

                                                                                                               When, 
0,

1, 0

x y

x y

 

 
 

= 1

0

qy pe y dy



 

      =  1/ pq p  

 

2.prove that 
    1

,

0

/ 1
m nm

m n
x x dx


  . Hence deduce that 

   
1

1 1

,

0

/ 1
m nm n

m n
x x x dx

    
  . 

 

Sol:        we know that 
   

1
11

,

0

1
nm

m n
x x dx

   

                                                                                                                      Put,x= t/1+t 

                                                                                                                   dx=  
2

1/ 1 t dt  

                                                                                                             when, 
0, 0

1,

x t

x t

 

 
 

=      
1

1 2

0

/1 1/1 1/ 1

m

n
t t t t dt


    
   

=  1

0

/ 1
m nmt t dt


   

=    
1

1 1

0 1

/ 1 / 1

m n

m nm mt t t t dt


      

Consider ,  1

1

/ 1

m n

mt t dt



   

                                                                                                                              Put, t=1/y 

                                                                                                                      Then, dt=-1/y 2 dy 

                                                                                                                   When, 
1, 1

, 0

t y

t y

 

 
 

=    
1

1/ 1 2

0

/ 1 1/ 1/
m nmy y y dy
    

=  
1

1

0

/ 1

m n

m n my y y dy



   

=  
1

1

0

/ 1

m n

ny y dy



   



=  
1

1

0

/ 1
m nnt t dt
         [changing the domain variable] 

Then,        
1 1 1

1 1 1 1

0 1 0 0

/ 1 / 1 / 1 / 1

m n

m n m n m nm m m nt t dt t t dt t t dt t t dt

 
                

   
1

1 1

,

0

/ 1
m nm n

m n
t t t dt

     

3.Evaluate  
1

0

1
p

m nx x dx  in terms of gamma functions and hence find  
1

0

/ 1 ndx x . 

Sol:            
1

0

1
p

m nx x dx  

                                                                        Put, nx t 1nnx dx dt  1 1/1/ ( / )ndx n dt t    

                                                                                         When, 
0, 0

1, 1

x t

x t

 

 
 

= 

1

/ 1 /

0

(1 ) 1/ ( )m n p n nt t n t dt  

=  1/n  
1

1/

0

1
pm n nt t dt    

= 1/n  1/ , 1m n p


 
 

= 1/n      1/ 1 / 1/ 1m n p m n p           
1/21 1

0

0 0

/ 1 1n ndx x x x dx


     

Here, m=0, n=n, p=-1/2 

       
1

0

/ 1 1/ 1/ 1/ 2 / 1/ 1/ 2ndx x n n n          

                            =   / (1/ ) / ( 2 / 2 )n n n n     

 

 

 

4.    prove that 
24

0

. xx e dx





  

  Sol:     
24

0

. xx e dx





  

          =   
24

0

. xx e dx





  



           =    3/2

0

1/ 2. . tt e dt







2

2

2

x t

xdx dt

dt
dx

t







 

          =     1

0

.x nn e x dx



     

3/2

0

1/ 2 . tt e dt





 =
1 5

.
2 2
                                                                          when x=o, t   

                            =
1 3 1 1

. .
2 2 2 2


,x t   

 

                            =  
3

8
                                                                   n-1=3/2 

 

                                           2m-1=3, 

                                           2m=4, 

                                            M=2. 

                                          2n-1=5/2, 

                                           2n=7/2, 

                                            n=7/4 

 

15 11 11

4 4 4
  

 

11 7 7
.

4 4 4

77 3 3
.

16 4 4

 

 

 

 

 

 

5.        

/ 2

3 5/2

0

/2

2 1 2 1

0

sin .cos

( , ) 2 sin .cos .

1
(2,7 / 4)

2

1 2. 7 / 2

2 2 7 / 4

3 3
1!. .

4 4
15

4

3

3 4.
77 3 38

. .
16 4 4

3 16 4
. .

8 77 3

8

77

m n

x xdx

m n d

I

I

I

I

I

I





   



 



 


 























/ 2

0

/2

1/2 1/2

0

tan

sin .cos .

1 3 1
( )

2 4, 4

3 1
.

1 4 4

2 1

1 3 1
.

2 4 4

d

d





 

  







 




  





2 1 1/ 2

2 3 / 2

3 / 4

m

m

m

 





2 1 1/ 2

2 1/ 2

1/ 4

n

n

n

  





 

 

/2

0

1/2/2

0

/2

1/2 1/2

0

/2

1/2 1/2

0

9. cot

cos

sin

cos sin

1
2 cos sin

2

1 1 3
,

2 4 4

1 1 3

2 2 4

d

d

d

d









 






  

  







 
  

 



 

 
  

 











  

 

 

 

 

 

10.prove that  

2m-1=-1/2         2n-1=1/2 

M=1/4                  n=3/4 

 



11

0

11

0

0

1

1

0

1
log

1
log

n

n

n y

y n

dx n
x

dx
x

y e dy

e y dy

n





 





 

  
  

  

  
   

  

 













 

 

11.prove that      

( 1, ) ( , 1) ( , )

1. 1
( 1, ) ( , 1)

1 1

m n m n m n

m n m n
m n m n

m n m n

  

 

   

     
    

     
 

.

1

( )

( )

( , )

m m n m n n

m n

m n m n

m n m n

m n

   


  

  


  



 

12.prove that  

 

 

dt=2xdx 

dx=
1/22 2

dt dt

x t
  

2

42

0 0 4 2

x
xe

x e dx
x


 

  

2 1/2

1

0

xI e x dx



  
42

2

0

4

xI x e dx

t x









2t x 1/2x t 1/4x t

put
1

log y
x

 
 

 
    =>

1 ye
x
  

ye x   

ydx e dy

when

 
 

0,

1, 0

x y

x y

 

 
 

 

3

3 3/4

2
1/4

3/4

0

1 3

2 4

0

1/4

0

4

4 4

4

1

4

1

4

1
1

4

3

4

1
3 / 4

4

t

t

t

dt x dx

dx dt
dx

x t

dt
t e

t

e t dt

e t dt

n

n












 



 







  



 







 



 
1/2

1/2

1/2

0

1 1

4 2

0

3/4

0

2

1

2

1

2

t

t

t

dt
e t

t

e t dt

e t dt



 


 





 













 

n-1=-3/4 

n=1-3/4 

n=1/4 

1
1/ 4

4
   

1

2

1
1/ 2

2

1
3 / 4

4

I

I

 

 

 

 

2 1

2 1

1/2

. .

1 1
,

2 2

1 1/ 2
.

2 2 1/ 2

1/ 2
1/ 2

2

n

n

w k t

n

n n n
i e

n n

n n











 
  

 

   


  


   

 

= 2  

n=1/4 

1/2

1
1 2 2

4 4 2




  

= 2  

Using this in above 

2

42

0 0

2

8

x
xe

dx x e dx
x


 

    



=  

13.
1

0
(1 )

m

n

x
Evaluate dx

x p

 

 and  deduce that 

1

0
1

sin( )

m

n

x
dx

mx
n

n





 


  

Then show that
4

0
1 2 2

dx

x







 

Sol:- 

 

 

1 1

0

1 ( 1/ ) 1/

2( 1/ ) 1/

0

1

/ 1 / 1

0

1

.(1 )
.

.(1 )

1/ . .(1 ) .

1/ . ( / , / )

/ /
1/ .

m

n

m n m n

p n n n n

p m n m n

x
dx

x p

t t dt

t nt t

n t t dt

n p m n m n

p m n m n
n

p





  

   

  








 

 

  









 

Put p=1 

4

0

cos / 4
1 4

2 2

dx
ec

x














 

  

4 2





14.   
/2

5 7

0
sin .cos .Evaluate d



    

/2
2 1 2 1

0
sin .cos .

1/ 2. (2,7 / 4)

2. 7 / 4
1/ 2.

2 7 / 4

1!.3 / 4. 3 / 4
1/ 2.

15 / 4

3 / 4
3 / 8.

77 /16.3 / 4. 3 / 4

3 / 8.16 / 77.4 / 3

8 / 77

m n d

I



  



 



 


 

















1

2 1 3

2 4

2

2 1 5 / 2

2 7 / 2

7 / 4

15 / 4 11/ 4

11/ 4.7 / 4. 7 / 4

77 /16.3 / 4 3 / 4

n n n

m

m

m

n

n

n

   

 





 


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FOURIER SERIES 

 

Particular Cases 

Case (i)  

If f(x) is defined over the interval (0,2l).   

    f(x) = ]sincos[
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If  f(x) is defined over the interval (0,2 ).   
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Case (ii)  

If f(x) is defined over the interval (-l , l).   

f(x) = ]sincos[
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If  f(x) is defined over the interval (- , ).   
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Problem:  Obtain the Fourier expansion of  

 f(x) = x
2

1
 in -  < x <  
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Using the values of a0 , an and bn in the Fourier expansion 
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This is the required Fourier expansion of the given function. 

 

 

 

 

 

 

 

 

 



Problem: Obtain the Fourier expansion of f(x)=e-ax in the interval (- , ).  Deduce that 
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For  x=0, a=1, the series reduces to  
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This is the desired deduction. 

 

Problem:  Obtain the Fourier expansion of f(x) = x2 over the interval (- , ).  Deduce that 
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                The function f(x) is even.  Hence 
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Integrating by parts, we get 
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Problem:   Obtain the Fourier expansion of  
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Thus the Fourier series of f(x) is  
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This is the series as required. 

 

Problem:  Obtain the Fourier expansion of  
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as f(x) cos(n x) is even  

Note that the point x=0 is a point of discontinuity of f(x).  Here f(x+) =0, f(x-)=-  at x=0.  Hence 
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Problem:  Obtain the Fourier series of f(x) = 1-x2 over the interval (-1,1). 
Solution:  
The given function is even,  as f(-x) = f(x). Also period of f(x) is 1-(-1)=2 
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Integrating by parts, we get 
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Solution:  

The period of f(x) is 3
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Also       f(-x) = f(x).    Hence f(x) is even 
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HALF-RANGE FOURIER SERIES 

The Fourier expansion of the periodic function f(x) of period 2l may contain both sine and cosine terms.  

Many a time it is required to obtain the Fourier expansion of f(x) in the interval (0,l) which is regarded as 

half interval.  The definition can be extended to the other half in such a manner that the function 

becomes even or odd.  This will result in cosine series or sine series only. 

 

Sine series : 

Suppose f(x) = (x) is given in the interval (0,l).  Then we define f(x) = - (-x) in (-l,0).  Hence 

f(x) becomes an odd function in (-l , l). The Fourier series then is 
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The series (11) is called half-range sine series over (0,l).   
 

Putting l=  in (11), we obtain the half-range sine series of f(x) over (0, ) given by 
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The series (12) is called half-range cosine series over (0,l) 
 

Putting l =  in (12), we get 
 

 

 

 

 

 

 

 

 

Problem:  Expand f(x) = x( -x) as half-range sine series over the interval (0, ). 

Solution: We have, 

0

2

0

sin)(
2

sin)(
2

nxdxxx

nxdxxfbn

 

Integrating by parts, we get 

n

n

n

n

nx

n

nx
x

n

nx
xxb

)1(1
4

cos
)2(

sin
2

cos2

3

0

32

2

 

The sine series of f(x) is 
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Problem:  Obtain the half-range cosine series of f(x) = c-x in 0<x<c 
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Chapter 2  

                               

                   FOURIER TRANSFORMS  

2.1 Introduction 

 The Fourier series expresses any periodic function into a sum of sinusoids. The Fourier 

transform is the extension of this idea to non-periodic functions by taking the limiting 

form of Fourier series when the fundamental period is made very large (infinite).    

Fourier transform finds its applications in astronomy, signal processing, linear time 

invariant (LTI) systems etc. 

                     Some useful results in computation of the Fourier transforms: 

1.             
 

 
 = 

 

     
 

2.             
 

 
 = 

 

     
 

3.  
     

 
   

 

 

 

 
      

When      
    

 
   

 

 

 

 
  

4.       
          

  
           

5.       
          

 
 

6.     
     

 

 
 = 

  

  
 

When         
 
  

 

 
 

  

 
  

7. Heaviside Step Function or Unit step function               
          
          

  

            At     ,       is sometimes taken as 0.5 or it may not have any specific value.  

           Shifting at      

                                 
          
          

  

8. Dirac Delta Function or Unit Impulse Function is defined as        = 0, t a 

such that                   
 

 
. It is zero everywhere except one point 'a'. 

Delta function in sometimes thought of having infinite value at      The delta 

function can be viewed as the derivative of the Heaviside step function  
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                     Dirichlet’s Conditions for Existence of Fourier Transform 

Fourier transform can be applied to any function      if it satisfies the following 

conditions: 

1.      is absolutely integrable i.e.          
 

  
 is convergent. 

2. The function       has a finite number of maxima and minima. 

3.      has only a finite number of discontinuities in any finite  

2.2 Fourier Transform, Inverse Fourier Transform and Fourier Integral 

                                       

The Fourier transform of               denoted by       where     , is given by 

                  = 
 

   
            

 

  
   …①   

  Also inverse Fourier transform of       gives      as: 

         
 

   
               
 

  
 … ② 

Rewriting ① as       = 
 

   
            

 

  
  and using in ②, Fourier integral 

representation of      is given by: 

     
 

  
                  

 

  

 

  
    

2.2.1 Fourier Sine Transform (F.S.T.) 

 Fourier Sine transform of            , denoted by        , is given by   

                  
 

 
             

 

 
…③ 

Also inverse Fourier Sine transform of         gives      as: 

      
 

 
              
 

 
 … ④ 

Rewriting ③ as         
 

 
             

 

 
  and using in ④, Fourier sine integral 

representation of      is given by: 
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2.2.2 Fourier Cosine Transform (F.C.T.) 

Fourier Cosine transform of            , denoted by        , is given by 

                  
 

 
             

 

 
…⑤  

Also inverse Fourier Cosine transform of         gives       as: 

      
 

 
              
 

 
 … ⑥ 

Rewriting ⑤ as         
 

 
             

 

 
  and using in ⑥, Fourier cosine integral 

representation of      is given by: 

      
 

 
            

 

 

 

 
          

Remark:  

 Parameter   may be taken as p, s or   as per usual notations. 

 Fourier transform of      may be given by        = 
 

   
             

 

  
 ,   

            then Inverse Fourier transform of      is given by      
 

   
              
 

  
 

 Sometimes Fourier transform of      is taken as        =             
 

  
, 

            thereby Inverse Fourier transform is given by       
 

  
               
 

  
 

            Similarly if Fourier Sine transform is taken as                     
 

 
, 

            then Inverse Sine transform is given by       
 

 
              
 

 
 

             Similar is the case with Fourier Cosine transform. 

Example 1 State giving reasons whether the Fourier transforms of the following 

functions exist:     i.     
 

 
                 ii.               iii.        

                       
                    

  

Solution: i. The graph of    
 

 
  oscillates infinite number of times at                                               

                         
 

 
  is having infinite number of maxima and minima in the interval          

                      . Hence Fourier transform of         
 

 
  does not exist. 

                ii. For        ,        
 

  
 is not convergent. Hence Fourier transform of 

                        does not exist. 
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  iii.       
                       
                    

  is having infinite number of maxima and                             

minima in the interval       . Hence Fourier transform of       does not exist. 

Example 2 Find Fourier Sine transform of 

                   i.  
 

 
           ii.             

Solution:  i. By definition, we have                  
 

 
             

 

 
 

                      
 

 
 

 

 
         

 

 

 

 
 
 

 
  

 

 
    

             ii.    By definition,                   
 

 
             

 

 
 

                      
 

 
                     
 

 
 

                            
 

 
             
 

 
  

 

 
             
 

 
 

                    
 

 
 
     

    
                

 

 

  
 

 
 
     

    
                

 

 

 

                    
 

 
   

  

    
   

 

 
   

  

    
   

 

 
 
  

    
 

  

    
   

 

 
 

       

            
  

Example 3   Find Fourier transform of Delta function        

  Solution:            = 
 

   
             

 

  
   

                                         =  
 

   
      

       
 

  
                by virtue of fundamental property of Delta function 

where      is  any differentiable function. 

Example 4 Show that Fourier sine and cosine transforms of       are 
   

   
   

  

 
 and      

                  
   

   
   

  

 
   respectively. 

Solution: By definition,     
 

 
             

                 Putting       so that         
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              Equating real and imaginary parts, we get  
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Example 5 Find Fourier Cosine transform of        
            

             
               

  

Solution:   By definition, we have                  
 

 
             

 

 
 

                           
 

 
            
 

 
   

                                
 

 
                        

 

 
           

 

 

 

 
  

          
 

 
      

     

 
       

     

  
  

 

 

        
     

 
        

     

  
  

 

 

   

         
 

 
 
    

 
 

    

  
 

 

  
 

     

  
 

    

 
 

    

  
   

 

 
 
             

  
         

Example 6 Find Fourier Sine and Cosine transform of           and hence show that 

                 
     

    
  

 

 
  

 

 
     

      

    
  

 

 
  

Solution: To find Fourier Sine transform 
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 ……① 

                   Taking inverse Fourier Sine transform of ① 
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…..② 

              Substituting          in ② 

                                  
 

 
 

      

    
  

 

 
  

                      Replacing   by   on both sides 

                            
 

 
 

      

    
  

 

 
  

         Now by property of definite integrals        
 

 
        

 

 
 

                          
 

 
     

      

    
  

 

 
  ….③ 

        Similarly taking Fourier Cosine transform of           
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                   Taking inverse Fourier Cosine transform of ④  
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              Substituting          in  ⑤  

                                  
 

 
 

     

    
  

 

 
  

                      Replacing   by   on both sides 

                            
 

 
 

     

    
  

 

 
  

                Again by property of definite integrals        
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                 From ③and ⑥, we get  

                 
     

    
  

 

 
  

 

 
     

      

    
  

 

 
  

Example 7 Find Fourier transform of        
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                  and hence evaluate   
          

  
    

 

 
  

 

 
  

Solution: Fourier transform of      is given by 

                                  = 
 

   
            

 

  
 

                                            
 

   
              

 

  
  

                               
 

   
        

    

  
        

    

    
       

    

    
  

  

 

 

                              
 

   
 
    

    
 

    

    
 

     

    
 

     

    
  

                               
 

 
  

        

  
 

        

   
                                             

                               
 

 
  

     

  
 

     

  
  

                               
   

  
 
          

  
  …..① 

                   Taking inverse Fourier transform of ① 

                              
 

   
               
 

  
  

                   
 

 
       

          

  
   

 

  
 

                   
 

 
                

          

  
   

 

  
                      

                   
 

 
        

          

  
         

          

  
    

 

  
….② 

              Substituting       
          
                

  in ② 

              
          
                

  
 

 
        

          

  
         

          

  
    

 

  
    

                     Equating real parts on both sides, we get 

                     
          

  
     

 

 
            

                
  

  
  

             Putting   
 

 
 on both sides 

                 
 

 
 
          

  
    

 

 
   

 

 
 

 

  
 

                 
 

 
 
          

  
    

  

 

 

 
         

 

 
 
          

  
  is an even function of     
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              Now by property of definite integrals        
 

 
        

 

 
 

                          
          

  
    

 

 
  

 

 
  

  

  
 

Example 8 Find the Fourier cosine transform of      
 

    
 

Solution:  To find Fourier cosine transform 

                                 
 

 
            
 

 
  

                                         
 

 
 

 

    
       

 

 
 …..①  

                      To evaluate the integral given by ①    

                       Let          …… ②  

                             
 

 
            
 

 
  

                                         
 

 
           
 

 
 

                                                
 

 
 
   

    
                

 

 

 

                                        
 

 

 

    
 

                Again taking Inverse Fourier cosine transform 

                           
 

 
 

 

    
        

 

 
 

                        
 

 
 

 

    
        

 

 
 

           
 

    
        

 

 

 

 
       ….. ③ 

              Using ② in ③, we get  

                 
 

    
        

 

 

 

 
    ……④ 

              Using ④ in ①, we get 
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Example 9 Find the Fourier sine transform of       
    

 
 and use it to evaluate           

                           
 

 
       

 

 
 

Solution: To find Fourier sine transform 

                                 
 

 
            
 

 
  

                                         
 

 
 

    

 
       

 

 
  

                 To evaluate the integral, differentiating both sides with respect to   

                           
 

  
        

 

 
  

    

 
          

 

 
 

                                         =  
 

 
             

 

 
 =  

 

 
 

 

     
 

                    Now integrating both sides with respect to   

                                      
 

 
 

 

     
   

                                 
 

 
      

 

 
     

                       when    ,         ,      

                              
 

 
      

 

 
  

                      Again taking Inverse Fourier Sine transform 

                           
 

 
       

 

 
         

 

 
  

                   Substituting      
    

 
 on both sides 

                   
    

 
 

 

 
       

 

 
         

 

 
 

                   Putting   =1 on both sides 

                    
 

 
          

 

 

 

 
         

                        
 

 

 

 
       

 

 
    

Example 10 If     Show that i.   
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                                                  ii.   
      

      
    

 

 

 

 
        

Solution:  i. Let      
 

  
              

                       Taking Fourier cosine transform of      , we get 

                                            
 

 
             

 

 
 

                                                      
 

  
 
 

 
             

 

 
 

                                                      
 

 
 
 

 

 

     
  

                    Also inverse Fourier cosine transform of         gives       as: 

                                           
 

 
              
 

 
 

                                               
 

 
 
 

 
 
 

 
 

 

     
       

 

 
 

                                            
     

      
  

 

 
 

                                 
     

      
    

 

  

 

 
          

                     ii. Again let      
 

 
             

                       Taking Fourier sine transform of      , we get 

                                            
 

 
             

 

 
 

                                                      
 

 
 
 

 
             

 

 
    

                                                        
 

 
             

 

 
       

                                                       
 

 

 

     
  

Also inverse Fourier sine transform of         gives       as: 
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 Example 11 Prove that Fourier transform of   
   

  is self reciprocal. 

 Solution: Fourier transform of      is given by 

                               = 
 

   
            

 

  
 

                 
   

   =      = 
 

   
   

   

     
 

  
   

                                           =  
 

   
  

   

 
       

  
   

 

   
  

  

 
            

  
 

                                           = 
 

   
   

  

 
                         

  
   

                                           = 
 

   
   

  

 
        

    

 
 

  
   

                                           = 
 
   

 

   
   

  

 
        

  
    

                                          = 
 
   

 

   
   

   

 
 

  
               By putting    =        

                                          =  
  

   

 

   
   

   

 
 

 
              

   

   being even function of     

                                          =  
  

   

 

   
   

  
 

  
 
 

 

 
   

                     Put 
 

  
                    

                                
    

   

 

   
     

  

 
   

                               
  

   

 

  
  
  

 
 =  
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Hence we see that Fourier transform of  
   

  is given by  
   

 . Variable    is transformed 

to      We can say that Fourier transform of   
   

  is self reciprocal. 

Example 12  Find Fourier Cosine transform of     
 
. 

 Solution: By definition,                   
 

 
            
 

 
  

                                        
 

 
      

 
       

 

 
   

                                                
 

 
      

  

 
 
          

 
     

                                               
 

   
       

 
    

 

 
     

 
          

                                              = 
 

   
      

         
      

 

 
   

       = 
 

   
    

        
  

 
      

  

 
 
 
   

  

 
 
 
 
  

        
  

 
      

  

 
 
 
   

  

 
 
 
 
   

 

 
  

       = 
 

   
        

  

 
 
 
 
    

       
  

 
 
 
 
    

  
 

 
    

       = 
 
   

 

   
       

  

 
 
 

 

 
         

  

 
 
 

 

 
     

        =
 
   

 

   
 
  

 
 

  

 
  

   
   

 

   
  

                      
 

  
  

  

               

                                                          Or                          

  Fourier Cosine transform of     
 
can also be found using the method given below: 

                                          
 

 
     

 
       

 

 
  ….①  

                            Differentiating both sides with respect to   
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    ….② 

                              
 

  
        

 

 
             using ① in ② 

                
 

  
      

      
  

 

 
 

                      Integrating both sides with respect to   

                                 
  

 
      , where      is the constant of integration 

                                 
  

  …..③  

                        
 

 
     

 
           

  

 
 

 
 

                  Putting     on both sides 

                         
 

 
    

 
  

 

 
   

                         
 

 
 
  

 
 

 

  
 ….. ④ 

         Using ④ in ③, we get  

                          
 

  
  

  

  

Example 13 Find Fourier transform of       
 
      

Solution: By definition,            
 
  =      = 

 

   
         

 
    

 

  
   

                       = 
 

   
       

      

  
   

                      = 
 

   
    

         
  

  
      

  

  
 
 
   

  

  
 
 
  

  
   

                     = 
 

   
         

  

  
 
 
 
    

  
 

  
   

                    = 
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                    = 
 
   

  

   
        

  

  
    

  

  
     

  

  
     , Putting    

  

  
    

                    = 
 
   

  

   
    

  

 
     

  

 
       

                                                 
 
                        

 
                      

                     = 
 
   

  

   
 
  

 
         

  

 
     

                     = 
 
   

  

   
 
  

    
    

  

 
     , Putting         

                      = 
 
   

  

   
 
  

    
 
  

 
              

  

 
    

  

 
   

                           = 
    

   

  

     
 

Example 14 Find Fourier cosine integral representation of        
        
                

  

Solution: Taking Fourier Cosine transform of        
        
                

  

                                 
 

 
            
 

 
  

                                        
 

 
          
 

 
    

               =  
 

 
       

     

 
       

      

  
      

      

  
  

 

 

 

                       
 

 
   

  

 
 

 

  
       

  

  
        

             Now taking Inverse Fourier Cosine transform 

                 
 

 
   

  

 
 

 

  
       

  

  
             

 

 
  

      This is the required Fourier cosine integral representation of        
        
                

  

Example 15  If        
          
                    

   ,         prove that                
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 .  Hence evaluate   

   
  

 

    
  

 

 
 

Solution: Given       
          
                    

    

 To find Fourier cosine integral representation of      , taking Fourier Cosine         

transform of        

                        
 

 
               

 

 
             

 

 

 

 
 

                           
 

  
                         

 

 
 

                           
 

  
  

         

     
 

         

     
 
 

 

 

                           
 

  
  

         

     
 

         

     
 

 

     
 

 

     
  

                           
 

  
 
     

     
 

     

     
 

 

     
 

 

     
  

                           
 

  
 
                       

          
 

       

          
  

                    
 

  
 
         

    
   

 

 
 
       

    
  

               Taking Inverse Fourier Cosine transform,       
 

 
              
 

 
 

                     
 

 
  

       

    
        

 

 
 

                             
 

 
 

                    

    
  

 

 
  

                             
 

 
 

                               

    
  

 

 
 

                    
 

 
 

                               

    
  

 

 
 

               Putting       
          
                    

  

                 
 

 
 

                               

    
  

 

 
  

          
                    

   

                 Putting   
 

 
 on both sides 
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Example 16 Solve the integral equation             
 

 
 =  

         
              

                           

Hence deduce that  
     

  
    

 

 

 

 
 

Solution:  Given that             
 

 
 =  

         
              

 ……①  

                   
 

 
             

 

 
 =  

 
 

 
           

      

  

                            
 

 
           

      

   

                  Taking Inverse Fourier Cosine transform 

                          
 

 
              
 

 
 

                     
 

 
               

 

 
   

                              
 

 
       

     

 
       

      

  
  

 

 

  

                              
 

 
  

    

  
 

 

  
 = 

 

 
  
      

  
   

 

 
 
     

 

 

  
 

                                   
     

 

 

   
 ….② 

                       Using ②in ①, we get 

                          
     

 

 

   

 

 
         =  

         
               

     

                           Putting      on both sides 
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                    Putting  
 

 
           

                    
     

   
     

 

 

 

 
     

     

  
    

 

 

 

 
 

Example 17 Find the function      if its Cosine transform is given by: 

                  (i)   
     

 
                 (ii)   

 

   
   

 

 
         

                     

  

Solution: (i) Given that        
     

 
 

                Taking Inverse Fourier Cosine transform 

                         
 

 
              
 

 
 

                    
 

 
 

     

 
       

 

 
  

                            
 

 
 
 

 
 

           

 
  

 

 
 

                             
 

 
 

         

 
   

 

 
 

          

 
  

 

 

 

 
  

                     Now                    

                  

 

 
 
 

 
 

 

 
                   

 

 
 
 

 
 

 

 
                  

     
     

 
   

 

 

 

 
     

                  
         
            

  

(ii) Given that         
 

   
   

 

 
         

                     

  

                Taking Inverse Fourier Cosine transform 
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Example 18 Find the function      if its Sine transform is given by: 

                  (i)                            (ii) 
 

    
 

Solution: (i) Given that             

                    Taking Inverse Fourier Sine transform 

                         
 

 
              
 

 
 

                      
 

 
            
 

 
 

 

 
 

 

     
  

              (ii) Given that        
 

    
 

                  Taking Inverse Fourier Sine transform 

                         
 

 
              
 

 
 

                      
 

 
 

 

    
       

 

 
  

                             
 

 
 

  

       
        

 

 
 

        

       
       

 

 

 

 
 

                              
 

 
 

     

 
  

 

 
 

 

 
 

     

       
  

 

 
 

                           
 

 
 

     

       
  

 

 
      ……①    

                                                                      
     

 
   

 

 

 

 
     

                      Differentiating with respect to   

                            
 

 
 

      

       
  

 

 
 

                           
 

 
 

     

      
  

 

 
 ……② 

                   Also        
 

 
 

       

      
  

 

 
      

                               ….. ③  

  This is a linear differential equation with constant coefficients 

       ③may be written as              

              Auxiliary equation is         
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             Solution of ③ is given by 

                     
     

   ….. ④ 

                     
     

   …..⑤ 

     Now from ①,       , at     

     Using in ④, we get         ….⑥  

     Again from ②,        
 

 
 

 

      
  

 

 
, at     

                   
 

 
         

      at     

      Using in ⑤, we get          …. ⑦ 

      Solving ⑥ and ⑦, we get           

      Using in ④, we get          

Note: Solution of the differential equation               may be written directly 

          as           

Example 19   Find the Fourier transform of the function                    

Solution:        
       
       

  

               Fourier transform of        is given by               =             
 

  
 

                                
 

  
            

 

 
     

                               =                         
 

 
 

 

  
  

                                
        

      
 
  

 

   
         

      
 
 

 

 

                        
 

    
 

 

    
 

  

     
    

                               
  

     
     

Result:              

 
          

  

     
      

  

     
         



Page | 20  
 

Example 20 Find      
 

            
   

Solution:      
 

            
  

 

 
     

 

    
 

 

    
    

                                                
 

 
     

 

     
 

 

     
  

                                                
  

  
    

 

    
  

 

  
    

 

    
    

                                               =  
  

  
       

 

  
                

  

     
         

Example 21 Find the Fourier transform of the function                   

                                  where      represents unit step function 

Solution:            
      
        

     
            
           

  

               Fourier transform of        is given by               =             
 

  
 

                                 
 

 
     

                               =             
 

 
 

                                  
         

      
 
 

 

 

                        
 

    
    

                     
 

    
  

               or              
 

    
     

      Result:     

 

Note:  If Fourier transform of                 is taken as          

                            
 

  
, then     

 

    
                    

Example 22 Find the inverse transform of the following functions: 

                i. 
 

         
               ii. 

 

         
                 iii. 

 

         
 

Solution: i.      
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                                               =                             
 

    
           

                
 

         
   

              
            

  

ii.      
 

         
        

 

            
      

 

      
 

 

      
  

                                                   
 

      
      

 

      
    

                                               =                              
 

    
           

                
 

         
   

              
            

  

iii.      
 

         
         

 

            
       

 

      
 

 

      
  

                                                    
 

      
       

 

      
    

                                               =                                
 

    
           

                
 

         
   

                
            

  

Example 23 Find the Fourier transform of       
 

    
       

Solution: We know       
 

    
            

                                       
 

    
            

                                   
 

  
 

 

    
        

 

  
           

                Interchanging    and  , we get 
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2.3 Properties of Fourier Transforms 

Linearity:  If  ( ) and  ( ) are Fourier transforms of               respectively, then   

                                      (     ( )   

      Proof:                   
 

   
               

 

  
       

                     
 

   
              

 

   
 

 

  
           
 

  
 

                      (     ( ) 

Change of scale: If  ( ) is Fourier transforms of      , then            
 

 
    

 

 
   

                Proof:             
 

   
            

 

  
  

                                   Putting                

                                 
 

   
           

 

 
 

  
. 
  

 
 = 

 

 
 

 

   
          

 

 
    

 

  
 

                                             
 

 
    

 

 
   

 Shifting Property: If  ( ) is Fourier transforms of      , then            =           

                      Proof:              
 

   
             

 

  
  

                                   Putting                  

                                          
 

   
                

 

  
    

                                     
 

   
             

 

  
             

Modulation Theorem:  If  ( ) is Fourier transforms of      , then 

i.               = 
 

 
                 

ii. Fs            = 
 

 
   

 
               

iii. Fc            = 
 

 
   

 
               

iv. Fc            = 
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v. Fs             = 
 

 
   

 
               

                Proof:   i.               
 

   
                

 

  
  

                                                                  
 

   
      

          

 
      

 

  
 

                                                 
 

 
 

 

   
                 

 

   

 

  
               
 

  
  

                                                 
 

 
                 

                                 ii. Fs             
 

 
           
 

 
          

                                                                
 

 
 
 

 
     
 

 
                                  

                                       
 

 
  

 

 
              
 

 
    

 

 
              
 

 
    

                                                              = 
 

 
   

 
               

                                 iii. Fc             
 

 
           
 

 
          

                                                                
 

 
 
 

 
     
 

 
                                  

                                       
 

 
  

 

 
              
 

 
    

 

 
              
 

 
    

                                                              = 
 

 
   

 
               

                                 iv. Fc             
 

 
           
 

 
          

                                                                
 

 
 
 

 
     
 

 
                                  

                                       
 

 
  

 

 
              
 

 
    

 

 
              
 

 
    

                                                              = 
 

 
   

 
               

                                 v. Fs             
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                                        = 
 

 
   

 
               

Convolution theorem:   Convolution of two functions      and      is defined as 

                                                            
 

  
  

If  ( ) and  ( ) are Fourier transforms of               respectively, then      

Convolution theorem for Fourier transforms states that 

                                                  =          .           ( ).  ( )  

 Proof: By definition       = 
 

   
            

 

  
 and       =             

 

  
 

                         Now                            
 

  
 

                                                          
 

  
   

 

  
 

                         Changing the order of integration, we get 

                                                   
 

  
   

 

  
 

                          Putting               in the inner integral, we get 

                                                      
 

  
   

 

  
 

                                                                 
 

  
   

 

  
 

                                         =                 
 

  
 

                                         =  ( )            
 

  
 

                                         =  ( ).  ( ) 

Example 24   Find the Fourier transform of     
 
   Hence find Fourier transforms of 

                    i.     
 
       ii.  

   

     iii.          
 
  iv.     

 
       

  Solution:   F     
 
  =      = 

 

   
     

 
    

 

  
   

                                    = 
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                                    = 
 

   
   

        
  

 
      

  

 
 
 
   

  

 
 
 
  

  
   

                                        = 
 

   
       

  

 
 
 
 
    

 
 

  
   

                                        = 
 
   

 

   
       

  

 
 
 

 

  
    

                                        = 
 
   

 

   
     

  

  
              By putting    =    

  

 
  

                                        =  
  

 
  

 

   
     

  

 
                 

 
 being even function of     

                                   = 
  

   

 

   
. 
  

 
 = 

 

  
 
   

  …..①  

         We have               
 

  
 
   

 
  if          

 
 

i. Now        
 
             

 

  

                                         
 

  
    

 

  
       By change of scale property…. ② 

                       
 
  = 

 

  
 
 

  
  
 
 

 
 
 

  
 
 

 = 
 

   
   

  

                Using ①in ② 

ii. Putting    
 

 
  in i. 

          
 

 

 

  =
 

   
 

 

  
 
   

 
 
  =    

  

   

iii. To find            
 
  ,    Put      in i. 

                    
 
   = 

 

 
  

  

  

                       
 
       . 

 

 
  

  

     By shifting property                                                     

iv. To find Fourier transform of        
 
       

                           = 
 

 
                 By modulation theorem 

             Now       
 
       

 

  
  

  

 .    
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       = 

 

 
  

 

  
  

      

  
 

  
  

      

   

Example 25 Using Convolution theorem, find     
 

          
  

Solution:     
 

          
       

 

            
      

 

      
 

 

      
  

               Now by Convolution theorem                                     

                                   =   ( ).  ( )                            

                          
 

      
 

 

      
      

 

      
      

 

      
  

                                             =                               
 

    
           

                                                                       
 

  
        

                                                                                               
 

  
 

                                              =                    
 

  
 

                  Now              
                                       
                                 

  

             
 

          
                        

  

 
                  

                                       =                

              
 

          
   

             
            

                                                               

Example 26 Find the inverse Fourier transforms of  
    

    
                        

Solution:  i. We know that      
 

    
           

                         
 

    
           

Now By shifting property                     
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2.4 Fourier Transforms of Derivatives 

Let         be a function of two independent variables   and   , such that Fourier 

transform of         is denoted by         i.e                      
 

  
 

Again let    
  

  
  
   

   
       as        ,  

Then Fourier transforms of  
  

   
, 
   

   
   with respect to   are given by: 

1.    
  

  
        

  

  
          

  

 
 

 

  
                      

 

  
  

              
   

   
        

   

   
        

  

  
 
  

 

 
 

  
       

  

  
                

 

  
 

                

               
   

   
                 

2. Fourier sine transform of 
   

   
 is given by: 

    
   

   
    

   

   
              

  

  
 
 

 

 
 

 
       

  

  
  

 

 
 

                                                = 0                  
           

   

   
  

 

 
      

               
   

   
                      

3. Fourier cosine transform of 
   

   
 is given by: 

    
   

   
    

   

   
              

  

  
 
 

 

 
 

 
       

  

  
  

 

 
 

                                  =    
  

  
 
   

                 
          

   

   
  

 

 
      

               
   

   
    

  

  
 
   

             

4. Fourier transforms of  
  

   
 with respect to   are given by: 

  
  

  
       

  

  
  

 

  
 

 

  
             
 

  
  

                  
  

  
  

 

  
        

Similarly     
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2.5 Applications of Fourier Transforms to boundary value problems 
Partial differential equation together with boundary and initial conditions can be easily 

solved using Fourier transforms. In one dimensional boundary value problems, the partial 

differential equations can easily be transformed into an ordinary differential equation by 

applying a suitable transform and solution to boundary value problem is obtained by 

applying inverse transform. In two dimensional problems, it is sometimes required to 

apply the transforms twice and the desired solution is obtained by double inversion. 

Algorithm to solve partial differential equations with boundary values: 

1. Apply the suitable transform to given partial differential equation. For this check 

the range of   

i. If       , then apply Fourier transform. 

ii. If      , then check initial value conditions 

a) If value of        is given, then apply Fourier sine transform 

b) If value of   
  

  
 
   

is given, then apply Fourier cosine transform 

          An ordinary differential equation will be formed after applying the transform. 

2. Solve the differential equation using usual methods. 

3. Apply Boundary value conditions to evaluate arbitrary constants.  

4. Apply inverse transform to get the required expression for           

Example 27 The temperature        at any point of an infinite bar satisfies the equation    

                      
  

  
 

   

   
             and the initial temperature along the length                                                            

                      of the bar is given by         
           

           
   

                      Determine the expression for         

Solution: As range of   is       , applying Fourier transform to both sides of the      

                   given equation : 

                    
  

  
    

   

   
  

                
 

  
       =               

  

  
  

 

  
       and    

   

   
                

                Rearranging the ordinary differential equation in variable separable form: 

                 
  

 
          ①         where           

                 Solving ① using usual methods of variable separable differential equations 
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      ② 

         Putting     on both sides 

                        ③ 

              Now given that         
           

           
  

               Taking Fourier transform on both sides, we get 

                   (   ) = 
 

   
       
 

  
        

                                 
 

   
      
 

  
   

                                 
 

   
 
 

  
       

  

 
 

                                 
 

   
 
 

  
            

 

   
 
  

  
 
         

  
  

                       
 

   
 
    

 
   ④ 

        From ③and ④, we get  

                   
 

   
 
    

 
  ⑤ 

         Using ⑤ in ②, we get 

                         
 

   
 
    

 
     

      

                 Taking Inverse Fourier transform 

                          
 

   
              
 

  
 

                      
 

  
 

    

 
     

         
 

  
 

                     
 

 
 

    

 

 

  
   

                   

                     
 

 
    

   

 
 
         

 
          

         

 
  is odd function of   

Example 28  Using Fourier transform, solve the equation  
  

  
  

   

   
                                                                    

                      subject to conditions: 
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i.                  

ii.                   

iii.   and 
  

  
 both tend to zero as      

Solution: As range of   is      , and also value of         is given in initial value         

                conditions, applying Fourier sine transform to both sides of the given equation: 

                     
  

  
      

   

   
  

                
 

  
        =                       

                                                 
  

  
  

 

  
        and     

   

   
                     

                
 

  
        =                                    

      Rearranging the ordinary differential equation in variable separable form: 

                 
  

 
           ①         where            

                 Solving ① using usual methods of variable separable differential equations 

                                  

                       
 

 
          

                                   
      ② 

         Putting     on both sides 

                         ③ 

              Now given that            

               Taking Fourier sine transform on both sides, we get 

                    (   ) =  
 

 
       
 

 
        

                                  
 

 
    
 

 
        

                             
 

 
 

 

    
   ④ 

              From ③and ④, we get  
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  ⑤ 

         Using ⑤ in ②, we get 

                           
 

 
 

 

    
      

      

                 Taking Inverse Fourier sine transform 

                           
 

 
               
 

 
 

                      
 

 
 

 

    
      

         
 

 
 

Example 29   The temperature        in a semi-infinite rod        is determined 

                          by the differential equation  
  

  
  

   

   
  subject to conditions: 

i.                      

ii. 
  

  
                             

Solution: As range of   is      , and also value of   
  

  
 
   

is given in initial value         

                  conditions, applying Fourier cosine transform to both sides of the equation: 

                                             
  

  
      

   

   
  

                
 

  
        =     

  

  
 
   

              

                                            
  

  
  

 

  
        and     

   

   
    

  

  
 
   

           

                 
 

  
        =                  

                 
  

  
           ①                        where            

                  This is a linear differential equation of the form  
  

  
      

                  where       ,       

                Integrating Factor (IF) =       =     
    =    

                  

                 Solution of ① is given by 

                    .   
  =        
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                         .   
  = 

     
  

   
   

                                 
 

  
      

    ② 

             Putting     on both sides 

                      
 

  
       ③ 

               Now given that          

               Taking Fourier cosine transform on both sides, we get 

                   (   ) =        
 

 
          

                                ④ 

            From ③and ④, we get  

                    
 

  
  ⑤ 

         Using ⑤ in ②, we get 

                         
 

  
       

       

                 Taking Inverse Fourier cosine transform 

                          
 

 
               
 

 
 

                      
  

 
  

      
  

  
        

 

 
 

Example 30 Using Fourier transforms, solve the equation  
  

  
  

   

   
                                                                   

                      subject to conditions: 

i.                  

ii.                  

Solution: As range of   is      , and also value of         is given in initial value         

                conditions, applying Fourier sine transform to both sides of the given equation: 

                     
  

  
      

   

   
  

                
 

  
 
 
      =              

 
        

                                                 
  

  
  

 

  
 
 
      and     
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      =         

 
                            

                 
  

  
            ①                    where     

 
      

                  This is a linear differential equation of the form  
  

  
      

                  where       ,        

                Integrating Factor (IF) =       =     
    =    

                  

                 Solution of ① is given by 

                    .   
  =         

       

                         .   
  = 

      
  

   
   

                          
 
      

 

 
      

    ② 

             Putting     on both sides 

               
 
      

 

 
       ③ 

               Now given that          

               Taking Fourier sine transform on both sides, we get 

                  
 
(   ) =        

 

 
          

                 
 
            ④ 

            From ③and ④, we get  

                    
 

 
  ⑤ 

         Using ⑤ in ②, we get 

                  
 
      

 

 
       

       

                 Taking Inverse Fourier sine transform 

                          
 

 
  

 
            

 

 
 

                      
  

 
  

      
  

 
        

 

 
 

 Example 31 An infinite string is initially at rest and its initial displacement is given   

                          by             . Determine the displacement        of the string.  
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Solution: The equation of the vibrating string is given by 

                   
   

   
   

   

   
 

                Initial conditions are 

i.    
  
 
   

  = 0 

ii.             

                 Taking Fourier transform on both sides 

                     
   

   
      

   

   
  

                     
  

   
       =                  where                   

                     
   

   
          ①                      where           

         Solution of ① is given by 

                                 ②  

            Putting     on both sides  

                        ③ 

            Given that             

                            ④ 

             From ③ and ④ 

              ⑤ 

      Using ⑤ in ②  

                                       ⑥ 

       
  

  
                         

          
  
 
   

      ⑦  

      Also given that    
  

  
 
   

      ⑧ 

     From ⑦ and ⑧, we get       ⑨ 

          Using ⑨ in ⑥, we get 
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        Taking inverse Fourier transform  

                
 

   
               

 

  
 

               
 

   
                   

 

  
 

                                                      Exercise 2A 

1. Find the Fourier transform of       
              
              

  

      Hence prove that  
     

  
   

 

 

 

 
 

2. Solve the integral equation                 
 

 
     

3. Obtain Fourier sine integral of the function       
           

           
         

  

4. Prove that Fourier integral of the function       
                    
                  

   is given by 

5. Find the Fourier sine and cosine transforms of        

            
 

 
 

         

 
  

 

 
       Hence show that  

    

 
   

 

 

 

 
 

6. The temperature        at any point of a semi infinite bar satisfies the equation    

                      
  

  
 

   

   
               , subject to conditions    

                     i.                      

                     ii.    .          
                   
                         

   Determine the expression for                                    

7. Determine the distribution of temperature in the semi infinite medium,      when the 

    end at     is maintained at zero temperature and initial distribution of temperature is 

            

                                                              Answers 

1. 
          

  
               2.      

 

       
             3.      

 

 
 

             

  
       

 

 
 

5.   
   

        
 ,  

     

        
    6.        

 

 
 

      

 
   

         
 

 
  

7.        
 

 
        

             
 

 
 



                         

             III B. Sc Physics-mathematical physics

              Unit –V NUMERICAL METHOD

Newton-Raphson method

Definition:

        The Newton-Raphson formula is

          xn+1=xn-
f ( xn)

f '(x¿¿n)¿,   n=0, 1, 2……….

Rate of convergence:

        The rate of convergence in Newton -Raphson method is 
order 2

Criterion for convergence:

(i) f ' (x¿¿0)¿ Should not be equal to zero. If f ' (x¿¿0)¿=0 then 
initial approximation must be changed.

(ii) For better convergence the product f (x¿¿0) f (x} rsub {0} ¿¿ 
should be zero.

Problems:

1. What is a transcendental equation?

            Equation which involves functions like logarithm, 
exponential, trigonometric etc is called transcendental equation.

(i) x+ Cos x+2=0 (ii) 2x + ex-5=0



   2. What is the rate of convergence in Newton -  Raphson 
method?

        The rate of convergence in Newton Raphson method is 
order 2

3 State the convergence condition for Newton Raphson 
method. 

      Condition for convergence is |f(x) f"(x)|<¿ f ' ( x )∨¿
2
¿

 4. Find the first approximation of the root lying between 0 and 1
of the equation x3+3x-1=0 by Newton - Raphson method.

                           f (x)= x3+3x-1

               f(0)= -1  (- ive)
               f(1)=1+3-1=3 ( + ive)
so, a root lies between 0 and 1
Here |f (0)| >|f (1)|
Take  x0=1                    f (1) =3
                   f' (X)=3x2+3

                               f'(1)=3*1+3=6

                   x1=x0-
f ( x0)

f '(x¿¿0)¿
=1-

3
6=0.5            

5. Write the iterative formula of Newton -Raphson method?

xn+1=xn-
f ( xn)

f ' (x¿¿n)¿,   n=0, 1, 2……….

6. Write down Newton- Raphson formula for finding √a where 
'a' is a positive number?



           xn+1=
1
2
¿+

a
xn

]

7.  Write down newton raphson formula for finding 1/n       
where 'n' is a real number?

xn+1=xn ¿Nxn¿

  8 . Find the first approximation of the equation  x log10 x−1.2=0 by 
newton raphson method correct correct to three      decimal 
places?

               Given, x log10 x−1.2=0

               Let f(x) =x log10 x−1.2

               f(1) =1 log101−1.2= -1.2= -ive

               f(2) =2 log102−1.2= -0.598= -ive

               f(3) =3 log10 3−1.2= 0.231= +ive

              so ,  root lies between 2 and 3

Here |f(2)| >|f(3)|
Take x0=2.7

Newton – Raphson formula is  xn+1=xn-
f ( xn)

f '(x¿¿n)¿,   n=0, 1,

f'(x)= [x.
1
X   log10 e ] +log10 X

       =log10 e +log10 X

f(x0) =2.7 log10 2.7−1.2= - 0.035
f ' (x0 )=¿ log10 e +log10 2.7=0.866



               x1=2.7—¿]=2.740

9. What is the criterion for the convergence in Newton Raphson 
method?

4 f ' (x¿¿0)¿ Should not be equal to zero. If f ' (x¿¿0)¿=0 then initial 
approximation must be changed.

5 For better convergence the product f (x¿¿0) f (x} rsub {0} ¿¿ should 
be zero.

10 .Find the positive root of x4-x=10 correct to three decimal 
places using Newton -Raphson method.

Solution:

    Given   x4-x=100 

             Let f (x) =x4-x-10

              f (0) =0-0-10=-10(- ive)

              f (1) = 14-1-10=-10(-ive)

              f (2)= 24-2-10=4(+ive)

So, a root lies between 1 and 2 

Here, |f (1)| >|f(2)

Therefore, the root is nearer to 2.

Let us take, x0=2

The N.R formula is



xn+1=xn-
f ( xn)

f ' (x¿¿n)¿,   n=0, 1, 

f(x)= x4-x-10  ,    f ' ( x )=¿ 4x3-1                                                           

n=0,x0=2

f (x0¿=24-2-10=16-2-10=4

f ' (x0 )=¿32-1=31

  x1=2-
4

31=1.871

n=1, x1=1.871

f(x¿¿1)¿= (1.8714
¿-1.871-10

         =0.383

f ' (x¿¿1)¿= (4) (1.8713
¿-1

         =25.199                                                                           x2=

x1-
f (x¿¿1)
f '(x¿¿1)¿

¿

    =1.871-
0.383

25.199                                                                               
x2 =1.856

n=2, x=2=1.856

f (x2¿=((1.856 ¿¿
4
¿-1.856-10=0.010

f ' (x2 )= (4) (1.856¿¿
3-1=24.574



x3=x2-
f (x¿¿2)
f ' (x¿¿2)¿

¿

=1.856-
00.010
24.574

=1.856.

Here x2=x3=1.856. Hence the better approximate rot is 1.856.

11. Using Newton's iterative method, find the root between 0 
and 1 of x3=6x-4 correct to 2 decimal places.

Given     x3=6x-4

f ( x )=x3-6x+4

              f (0) =4 (+ive)

              f (1) = -1=(-ive)

              So, a root lies between 0 and 1

Here, |f (0)| > |f(1)

Therefore, the root is nearer to 1.

Let us take, x0=1

The N.R formula is

xn+1=xn-
f ( xn)

f ' (x¿¿n)¿,   n=0, 1,

f ' ( x )=¿ 3 x2-6                                                                        

n=0,x0=1

f (1¿=-1(- ive)



f ' (1 )=¿ -3(- ive)

  x1=1-
−1
3 =0.67

n=1, x1=0.67

f(x¿¿1)¿= (0.673
¿-6(0.57)+4

         =0.28

f ' (x¿¿1)¿= 3(0.672
¿-6=-4.65                                                                

x2=x1-
f (x¿¿1)
f ' (x¿¿1)¿

¿

    =0.67-
0.28

−4.65                                                                                   
x2 =0.73

n=2, x=2=0.73

f (x2¿=  (0.73¿¿
3-6(0.73)+4=0.01

f ' (x2 )= (3)(0.73 ¿¿
2-6=-4.40

x3=x2-
f (x¿¿2)
f ' (x¿¿2)¿

¿

=0.73-
0.01

−4.40  

=0.73

Here x2=x3=0.73. Hence the better approximate rot is 0.73.

12. Find the real positive root of 3x-cosx-1=0 by Newton,s 
method correct to 6 decimal places.



Given ,    3x-cosx-1=0

   f(x)=3x-cosx-1

f ' ( x )=3+sin x

       f (0) =-2 (ive)

       f (1) = 1.459698(+ive)

       So, a root lies between 0 and 1

Here, |f (0)| >|f(1)

Therefore, the root is nearer to 0.

Let us take, x0=0.3

The N.R formula is

xn+1=xn-
f ( xn)

f ' (x¿¿n)¿,   n=0, 1,

n=0,x0=0.6

f ' (0.6 )=¿ 3.564642(+ ive)

  x1=x0-
f (x¿¿0)

f ' (x¿¿0)¿
¿

   x1=0.6-
0.025336
3.564642

              =0.607108

n=1, x1=0.607108



f(x¿¿1)¿= 3(0.607108 ¿- cos(0.607108)-1

         =0.000023                                                                         x2=

x1-
f (x¿¿1)
f '(x¿¿1)¿

¿

    =0.607108-
0.000023
3.570495                                                                      

x2 =0.607102

Here x2=x1=0.607102. Hence the better approximate rot is 
0.607102.

13.Solve by Newton's  method ,a root of ex-4x=0.

     Given     ex-4x=0

              f (x)=ex-4x

              f (0) =1 (+ive)

              f (1) = -1.2817=(-ive)

So, a root lies between 0 and 1

Here, |f (0)| <|f(1)Therefore, the root is nearer to 0.

Let us take, x0=0.3

The N.R formula is

xn+1=xn-
f ( xn)

f ' (x¿¿n)¿,   n=0, 1,

f ' ( x )=¿ ex−4

x1=x0-
f ( x0)

f '(x¿¿0)¿
 =0.3-[e

0.3
−4(0.3)

e0.3
−4

¿



 x1=0.3 -
0.1499
−2.650   =0.3566                                                                 

  x2=x1-
f (x¿¿1)
f ' (x¿¿1)¿

¿=0.3566-[e
0.3566

−4 (0.3566)

e0.3566
−4

    =0.3574                                                                                      
x2 =0.3574

x3=x2-
f (x¿¿2)
f ' (x¿¿2)¿

¿=0.3574-[e
0.3574

−4 (0.3574)

e0.3574
−4

=0.3574

Here x2=x3=0.3574. Hence the better approximate root is 0.3574

14 .Write down Newton Raphson formula for finding √a, where 
'a' is a positive number and hence find √5

             Let x=√a

                 x2=a

              x2-a=0

       Let f(x) = x2-a

       f ' ( x )   = 2 x

N-R formula    is   

        xn+1=xn-
f ( xn)

f ' (x¿¿n)¿,   n=0, 1,



               = xn− xn
2

2 xn
 + 

a
2xn

                                                                    

¿ xn- 
xn
2 +

a
2xn

       =
xn
2 +

a
2xn

       xn+1= 
1
2[xn+

a
2xn

] is the iterative formula to Find √a.

To find √5

Put       a = 5

       Also     x = √5 lies between 2 and 3

Let x0 = 2.

    xn+1      = 
1
2[xn+

a
xn

]

x1   = 
1
2[x0+

5
x0

]

  = 
1
2[2+

5
2] = 

1
2 = 2.25

  x2 =  
1
2[x1+

5
x1

]

= 
1
2[2.25+ +

5
2.25]

   x2 = 2.2361    

  x3 ¿ 
1
2[x2+

5
x2

]

                = 
1
2[2.2361+ +

5
2.2361]



x3   = 2.2361

Here, x2 = x3 = 2.2361

Hence the approximate value of √5 = 2.2361

15.  Find the iterative formula for finding the value of 1/n where 
n is a real number using newton raphson method hence evaluate 
1/26 correct to 4 decimal places

Let x = 
1
N

    N   = 
1
x

      Let f(x) = 
1
x  - N,

      f’(x) = - 
1

x2

The N.R formula is

               xn+1=xn-
f ( xn)

f ' (x¿¿n)¿,   n=0, 1,

                      =xn-

1
xn

−N

−1
xn

2

,   

                      =xn + xn2 [
1
xn

 - N]

                     =xn + xn - N.xn2  

    = 2xn - N.xn2  

   xn+1 = xn [2 - N.xn2] is the iterative formula



To Find  
1

26, take N = 26.

Let x0 = 0.04 [x0 = 
1

25 = 0.04

      xn+1 = xn [2 - Nxn]

          x1 = x0 [2 - 26x0]

 x1 = (0.04) [2 – 26 (0.04)] = 0.0384

x2 = x1 [2 - 26x1]

      = (0.0384) [2 – 26 (0.0384)] = 0.0385

x3 = x2 [2- 26.x2]

     = (0.0385) [2 – 26 (0.0385)

x3 = 0.0385

Hence the value of 
1

26 = 0.0385.

Trapezoidal rule:

Definition:

The Trapezoidal rule is

∫
x0

x0++nh

f ( x ) dx= h
2
[(y0+yn¿+ 2(y1+y2+….+yn−1)]

                         =
h
2[(sum of the first and last term)+ 2 (sum of the

remaining term)

 Simpson's 1/3 rule:



 Definition:

       The Simpson's 1/3 rule is

         ∫
x0

x0 +nh

f ( x ) dx=
h
3[(y0+yn ¿+4(y1+y3 +… yn−1)+¿+2(y2+ y4+….+yn−2 ¿]

Simpson's 3/8th rule:

 Definition

      The Simpson's 3/8th rule is

∫
x0

x0+nh

f ( x )dx=3h
8

[(y0+yn ¿+3(y1+y2+ y4+ y5….+yn−1 ¿+2(y3+ y6+….+yn−3)

Problems:

16. What is the order of error in trapezoidal formula?

   Error in the Trapezoidal formula is of the order h2.

17. What is the order of error in Simpson's formula?

   Error in the Simpson's formula is of the order h4.

18.  What is the error in trapezoidal rule of numerical integration
?

     Error in trapezoidal rule is

       |E| <(b−a)
12

h2M in the interval (a, b), where h=(b−a)
n



19. What is the error in Simpson’s rule of numerical integration?

       |E| <(b−a)
180

h4M in the interval 
20.  Using trapezoidal rule, Evaluate  ∫

0

Π

sin x dx   by dividing the 

range into 6 equal parts.

x 0 Π
6

2Π
6

3Π
6

4Π
6

5Π
6

1

y 0 0.5 0.866 1 0.866 0.5 0

∫
0

Π

sin x dx = ∫
x0

x0+nh

f ( x ) dx=h2[(y0+yn ¿+2(y1+y2+….+yn−1)]

=
Π
6
2

[(0+0)+2(0.5+0.866+1+0.866+0.5]

                          =0.65136

21.  Using Simpson's rule find∫
0

4

exdx

givene0
=1 , e1

=2.72 , e2
=7.39 , e3

=20.09 , e4
=54.6

 Let f(x) =ex

Take h=1

 The Simpson's rule

∫
0

4

e xdx= h
13

 [(yo+y4 ¿ +2y2+4 ¿+y3¿¿]



    
1
3[(1+54.6) +2(7.39) +4(2.72+20.09)]  

              = 53.8733

22. Using trapezoidal rule evaluate∫
−1

1
1

1+x2   dx taking 8 intervals

Solution:  Here y(x) = 
1

1+ x2

Length of the interval = 2 so, we divide 8 equal intervals with 

h = 
2
8 = 0.25

By trapezoidal rule,  

We get ∫
−1

1
1

1+x2  dx =
h
2 [ (y0 + yh) + 2(y1+y2+…. + yn−1)]

                      = 
0.25

2  [(0.5+ 0.5) + 2(0.64+0.8+0.9412

1+0.8+0.64)]

                      = 
0.25

2  [1+2(5.7624)]

                      = 
0.25

2 [12.5248] = 1.5656

23. Dividing the range into 10 equal parts, find the value of

∫
0

Π
2

sin xdxby (i) trapezoidal rule (ii) simpson's rule

Solution:



  Given y(x) = sin x, h= 
Π
2

10
 =
Π
20

Divide the interval into 10 equal parts

X 0 Π
20

2Π
20

3Π
20

4Π
20

Y=sin x 0 0.156
4

03090 0.4540 0.5878

5Π
20

6Π
20

7Π
20

8Π
20

9Π
20

10Π
20

0.707
1

0.8090 0.8910 0.9511 0.9877 1

(i) By trapezoidal rule

              ∫
0

Π
2

sin xdx=
h
2 [(yo+yn+21y1+y2+…+yn-1)]

                               =   
h
2[(yo+y10) +2(y1+y2+…. +y9)]

                                    =
Π
20
2

[(0+1)+2(0.1564+0.3090+0.4540+0.5878+0.7071+0.8090

                +0.8910+0.9511+0.9877)]

             = 
Π
40[0+1+ 2(5.8531)]

             = 
Π
40[0+1+12 .706                                          ∫

0

Π
2

sin xdx



=0.9980

(ii)By Simpson’s
1
3 rule

    ∫
0

Π
2

sin xdx
h
3
 [(yo+yn ¿+4 (y1+y3+y5+y7+y9) +2(y2+y4+y6+y8)]

              =  
Π
20
3

 [(0+1) +(0.1564+0.4540+0.7071+0.8910+0.9877)

+2 (0.3090+0.5878+0.8090+0.9511)]

               = 
Π
60[(0+1)+4(3.1962)+2(2.6569)

               = 
Π
60[(1+12.7848+5.3138)]

               = = 
Π
60[19.0986] =1.0000

  

24. Using Simpson's One third rule evaluate ∫
0

1

x ex dx taking 4 

intervals . Compare your result with actual value.

Solution:

 

Given            f(x) = xex

Taking 4 intervals, h = 
b−a
n  = 

1−0
4  =

1
4  =0.25

X 0 0.25 0.5 0.75 1
Y=xex 0 0.321 0.824 1.588 0.718



Simpson’s
1
3 rule is

∫
xo

xn

f (x ) dx= h
3
   [(yo+y4) +4(y1+y3) +2(y2)]

                 = 
0.25

3   [(0+2.718)+4(0.321+1.588)+2(0.824)]

                = 
0.25

3  [2.718+7.636+1.648]

                   =
0.25

3  [12.002] =
3.0005

3  =1……………… (A)

Actual value

        ∫
o

1

x exdx = ∫
0

1

xd ¿]

                 = [xex]1
0 -  ∫

o

1

exdx

= ¿-0] – [ex]1
0

                 = (e1 – 0) – [e1 -e0]

                 =e1 - [e – 1]

             =e – [e – 1] = 1…………………..B

Here A = B

So both the values are equal.

25. By dividing the range into ten equal parts, evaluate∫
0

Π

sin xd x by

trapezoidal and Simpson’s rule. verify your answer with 
integration



Sol given, f(x) = sin xdx

h = 
b−a
n  = 

Π−0
10  = 

Π
10

table value

X 0 Π
10

2Π
10

3Π
10

4Π

Y=sin x 0 0.3090 0.5878 0.8090 0.9511

X 5Π
10

6Π
10

7Π
10

8Π
10

9Π
10

Π
10

Y=sin x 1.0 0.9511 0.8090 0.5878 0.3090 0

(i)By trapezoidal rule,∫
0

Π

sin xd x

∫
0

Π

sin xd x  = h
2
[yo+yn) +2(y1+y2) +…………..(yn−1)

  = 
h
2[yo+y10) +2(y1+y2+ y3 +…………..y9)

  =
Π
10
2

[(0+0)+2(0.3090+0.5878+0.8090+0.9511+1.0+0.9511+0.8090+
0.5878+0.3090]

=1.9843…………. (1)

(ii) Simpsons' rule

∫
0

Π

sin xd x=h
3
[(y0+yn ¿+4(y1+y3 +… yn−1)+¿+2(y2+ y4+….+yn−2 



 =
Π
10
2

[(0+0)+4(0.3090+0.8090+1+0.8090+0.3090)+20.5878
+0.9511+0.9511+0.5878)]  

= 
Π
30     *19.0996   =2.001………… (2)  

(iii) Actual integration

I=∫
0

Π

sin xd x= (-cos x ¿Π
0

¿

                      = -(cos Π-cos 0)

                     = (-1-1)

                     = 2……………………………(3)

Comparing (1), (2), and (3)    Simpsons rule is more accurate 
that ha trapezoidal rule.   

Euler’s method :

Definition:    

    Euler's formula is

yn+1= yn+hf (xn , yn), n=0, 1, 2

26. Solve 
dy
dx   =1-y, y(0)=0 for x=0.1  By euler's method

               Given , f(x,y)=1-y, x=0, y=0 h=0.1

      Euler’s algorithm,

              yn+1=   yn+h f(xn , yn¿



                   y1= y0+h f(x0 , y0
¿
¿
¿¿

                         =0+0.1(1-0)

                     y1=0.1

                              

27. Using Euler’s method find y (0.2) and y (0.4) from
dy
dx

=x+ y, y 

(0)=1 with h=0.2

  Solution:

         Given f(x, y) = x + y

x0=0,y0=1

x1=0.2,x2=0.4

           Euler’s Algorithm   yn+1=   yn+h f (xn , yn ¿

                   y1= y0+h f ¿ y0)

                       =1+0.2(0+1)

                       =1.2

                   y2= y1+h f ¿ y1)

                       =1.2+(0.2)(0.2+1.2)

                        =1.2+0.2(1.4)

                        =1.2+0.28=1.48

                 y3= y2+h f ¿ y2)



                    = 1.48 +(0.2)(0.4+1.48)

                     =1.48+0.376

                      =1.856

28. Using Euler’s Method , Solve 
dy
dx

=x+ y+xy, y (0)=1 with 

y(0)=1 compute y at x=0.1 by taking h=0.05.

Solution:

         Given f(x, y) = x + y+ x y

x0=0,y0=1, h=0.05

Euler’s Algorithm   

              yn+1=   yn+h f (xn , yn ¿

                   y1= y0+h f ¿ y0)

                       =1+0.05[x0+ y0+x0 y0]

                       =1+0.05(0+1+0)

                        =1+0.05=1.05

                   y2= y1+h f ¿ y1)

                       =1.05+0.05[x1+ y1+x1 y1]

                       =1.05+0.05[0.05+1.05+(0.05)(1.05)]

                       =1.05+0.05[1.1525]



                        =1.05+0.057625

                         =1.107625

 29. Using Euler’s Method , find the solution of the initial value 

problem .
dy
dx

=log ¿, y (0)=2 at x=0.2 by assuming h=0.2.

Solution:

         Given f(x, y) =  log ¿,

x0=0,y0=2, h=0.2

Euler’s Algorithm   

              yn+1=   yn+h f (xn , yn ¿

                   y1= y0+h f ¿ y0)

                       =y0+h log¿ y0)

                       =2+0.2[log (0+2)]

                        =2+0.2 log 2

                         =2+0.2(0.3010)

               y(0.2)=2.0602.

Runge  - kutta  method 

Fourth order Runge - Kutta method for solving first order 
equations:



Properties:

(i) To evaluate ym+1, they need only information at the 
point (xm , ym).

(ii)  They don’t involve the derivatives of f(x, y), such as 
in Taylor’s series method.

(iii) They agree  with the Taylor’s series solution upto the 
terms of hr, where r differs from method to method and
is known as the order of that Runge - Kutta Method

Second order R-K method:

     If the initial values of (x, y) for the differential equation  

dy
dx

 =f(x, y) then the first increment in y namely ∆y is calculated 

from the formula.

         k1= h f ¿)

             k 2= h f ¿+
h
2, y+

k1

2 ]

                ∆y=  k 2 where h=∆x.

        k1= h f ¿)

            k 2= h f ¿+
h
2, y+

k1

2 ]



k3= h f[ x+h, y+2k2−k1]

       and ∆y=
1
6 (k1+4 k2+k3)

         k1= h f ¿)

             k 2= h f ¿+
h
2, y+

k1

2 ]

 k3= h f ¿+
h
2, y+

k 2
2   )                                                     k 4= h f ¿x+h, 

y+k3)

and ∆y=
1
6 (k1+2k2+ 2k3+k 4)

     y (x+ h)= y(x)+ ∆y.

Working rule:

   To solve 
dy
dx= y1= f(x , y), y(¿)=y0

    k1= h f ¿ y0)

                     k 2= h f ¿+
h
2, y0+

k1

2 )                                                  k3= 

h f ¿+
h
2, y0+

k2

2   )                                                     k 4= h f ¿+h, y0+k3)

and  ∆y=
1
6 (k1+2k2+ 2k3+k 4)

               y1=y0+∆y

      where h=∆x



Now starting from  ¿ y1)  and repeat the process.  

                                                   

                .

30  Write the Runge- kutta algorithm of second order for solving
y1=f( x, y), y¿)=y0

        Let h denote the interval between equidistant values of
x.

           If the initial values are x0 , y0) , the first increment               
in y is computed from the formulas

                k1= h f ¿ y0)

             k 2= h f ¿+
h
2, y0+

k 1
2 ,) and ∆y=  k 2     Thenx1 =  x0 +h,   y1

= y0+∆y
The increment is y in the second interval is computed 

in a similar manner using the same three formulas , using 
the values x ,y in the place of  x0 , y0 respectively

31. Write down the R-K formula of  fourth order to solve  
dy
dx    



=f(x, y) with y ( x0 ) =  y0      

                       Let h denote the interval 

              If the initial values are ¿ y0)   

The first increment in y is computed from the formulas 
k1= h f ¿ y0)

                     k 2= h f ¿+
h
2, y0+

k 1
2 )                                                  k3=

h f ¿+
h
2, y0+

k 2
2   )                                                     k 4= h f ¿+h, y0+k3

)

and  ∆y=
1
6 (k1+2k2+ 2k3+k 4)

         Then x1     = x0+h, y1=y0+∆y

The increment in y n the second interval is computed in a similar
manner using the same four formulas, using the value x1 , y1 in the 
place of x0 , y0 respectively                                                               

32.   Given 
dy
dx  = x3+y, y (0)=2 compute y(0.2), y(0.4) by Runge- 

Kutta method of fourth order

     Solution:   Given 
dy
dx= y1= x3+y =f(x ,y)

         x0=0, y0=2

x1=¿0.2, x2 =0.4, x3=0.6

By fourth order R-K algorithm

      k1= h f¿ y0)



                  k 2= h f ¿+
h
2, y0+

k 1
2 )                                                  k3= h

f ¿+
h
2, y0+

k 2
2   )                                                     k 4= h f ¿+h, y0+k3)

       ∆y=
1
6 (k1+2k2+ 2k3+k 4)

   y (x+ h)= y(x)+ ∆y

(i) To find y(0.2)

                              y1=0.2, x0=0, y0=2, h= 0.2

k1= h f¿ y0)

                               = (0.2) [x0
3 + y0]

               = (0.2) [0+2]

= 0.2*2=0.4

              

          k 2  =h f [x0 +
h
2  ,y0+¿ 

k 1
2  ]

= (0.2) f [0+¿ 
0.2
2 , 2++¿ 

0.4
2 ]

= (0.2) f (0.1, 2.2)

= (0.2) [0.13+ 2.2]

= (0.2) (2.201)

= 0.4402

        k3     =h f [x0 +
h
2  ,y0+¿ 

k 2
2  ] 



                 = (0.2) f [0+¿ 
0.2
2 , 2+¿ 

0.4402
2 ]

                 = (0.2) f [ 0.1 , 2.2201]

= (0.2) [0.13+ 2.2201]

= (0.2) (2.2211)

        k3=0.44422.

       k 4      =h f [x0 +h,y0+k 3  ] 

                 = (0.2) f [0+0.2, 2+0.44422]

                 = (0.2) f [0.2, 2.44422]

                 = (0.2) [0.23+ 2.44422]

= (0.2) [2.44422]

       k 4=0.44422.

       ∆y = 
1
6 (k1+2k2+ 2k3+k 4)

            = 
1
6[0.4 + 2(0.4402) + 2(0.44422) + 0.490444)]

            = 
1
6(2.65928)  

           = 0.44321
    y(0.2) =0.44321
           y1=y0+∆y 

                       = 2+0.44321=2.44321

                    y1=2.44321

(ii)To find y (0.4)



Apply R – K method

             k1= h f ¿ y1)

                     = 0.2 f[0.2, 2.443]  

                    = (0.2) [(0.2¿¿
3+2.443]

                    = (0.2) [2.451]

                    = 0.4902

k 2  =h f [x1 +
h
2  ,y1+¿ 

k 1
2  ]

                   = (0.2) f [0.2+¿ 
0.2
2 , 2.443++¿ 

0.4902
2 ]

= (0.2) f (0.3, 2.6881)

= (0.2) [0.33+ 2.6881]

= (0.2) (2.7151)

= 0.5430

k3     =h f [x1 +
h
2  ,y1+¿ 

k2

2  ]

               = (0.2) f [0.2+¿ 
0.2
2 , 2.443+¿ 

0543
2 ]

                 = (0.2) f [0.3, 2.7145]

= (0.2) [¿+ 2.7145]

= (0.2) (2.7145)

        k3=0.5483.



        k 4      =h f [x1 +h,y1+k3  ] 

                 = (0.2) f [0.2+0.2, 2.4443+0.5483]

                 = (0.2) f [0.4, 2.9913]

                 = (0.2) [¿+ 2.9913)

                 = (0.2) (3.0553)

                 = 0.6111

∆y = 
1
6 (k1+2k2+ 2k3+k 4)

            = 
1
6[0.4902 + 2(0.543) + 2(0.5483) + 0.6111)]

            = 
1
6(3.2839)  

           = 0.5473
    y(0.4) =0.5473
           y2=y1+∆y 

                       = 2.443+0.5473=2.99

                    y2=2.99

33. Using R-k method of fourth order solve dydx=
y2

−x2

y2
+x2  with 

y (0) =1 at x=0.2.

Solution:   Given     dydx=
y2

−x2

y2
+x2 , 

x0=0,y0=1

x1=¿0.2, h=0.2



By fourth order R-K algorithm

      k1= h f¿ y0)

                  k 2= h f ¿+
h
2, y0+

k 1
2 )                                                  k3= h

f ¿+
h
2, y0+

k 2
2   )                                                     k 4= h f ¿+h, y0+k3)

       ∆y=
1
6 (k1+2k2+ 2k3+k 4)

   y (x+ h)= y(x)+ ∆y

k1= h f¿ y0)

                =0.2[
y0

2
−x0

2

y0
2
+x0

2 ] = 0.2[
1−0
1+0

¿=0.2

k 2= h f ¿+
h
2, y0+

k 1
2 )   

     = (0.2) f [0+
0.2
2  , 1+

0.2
2  ]                                    

     = (0.2) f (0.1, 1.1)

    = (0.2) [
1.2

1.222]

    =0.19672

k3= h f ¿+
h
2, y0+

k 2
2   ) 

      = (0.2) f ¿+
0.2
2 , 1+

0.19672
2  )

       = (0.2) f (0.1, 1.0983606)

       =0.1967



k 4= h f ¿+h, y0+k3)

       = (0.2) f (0.2, 1.1967)

        = 0.1891 

 ∆y=
1
6 (k1+2k2+ 2k3+k 4)

          =
1
6 (0.2+2(0.19672) + 2(0.1967) + 0.1891)

          =0.19598

   y (x+ h)= y(x)+ ∆y

y ( 0.2)= y(x)+ ∆y=y0+∆y

                         = 1+0.19598=1.19598

34.  Apply R-K method to find  y(0.2) in steps of 0.1 if  

dy
dx

=x+ y2

 given that y(0)=1

Solution

k1=hf ( x , y )
                     

k2=hf ( x+ h2 , y+
k1

2 )

k2=hf ( x+ h2 , y+
k1

2 )
k 4=hf (x+h , y+k3)

Δy=
1
6
( k1+2k2+2k 3+k 4 )

y ( x+h)= y ( x )+Δy

k1=0 . 1000

k2=0 . 1152



k3=0 . 1168

k 4=0 .1347

Δy=0 .1165

y (0 .1 )=1 .1165

To find y(0.2)
k1=0 . 1347

k2=0 . 1551

k3=0 .1576

k 4=0 .1823

Δy=0 .1571

y (0 .2 )=1 .2736

35 Using R-K method to find  y(1.2) and y(1.4) from  

dy
dx

=
2 xy+ex

x2+xex  given that y(1)=0

Solution

k1=hf ( x , y )
                     

k2=hf ( x+ h2 , y+
k1

2 )

k2=hf ( x+ h2 , y+
k1

2 )
k 4=hf (x+h , y+k3)

Δy=
1
6
( k1+2k2+2k 3+k 4 )

y ( x+h)= y ( x )+Δy

To find y(1.2)

k1=0 . 1462

k2=0 . 1402

k3=0 . 1399



k 4=0 .148

Δy=0 .1348

y (1.2)=0 .1402

To find y(1.4)

k1=0 . 1348

k2=0 . 1303

k3=0 . 1301

k 4=0 .1260

Δy=0 .1303

y (0 .2 )=0 .2705
 

                              Unit II

                   Special Functions



Double integral:

Recall that a single integral is something of the form

                           ∫
a

b

f ( x )dx

A double integral is of the form

                        ∬
R

❑

f ( x , y )dx dy

 Where R is called the region of integration and is a region in the
(x , y) plane. The double integral gives us the volume under the 
surface z=f (x , y), just as a single integral gives the area under a
curve.

Evaluation of the double integrals

To evaluate a double integral we do it in stages, starting from 
the inside and working out, using our knowledge of the methods 
for single integrals. The easiest kind of region R to work with is 
a rectangle. To evaluate

∬
R

❑

f ( x , y )dx dy

Proceed as follows

 Work out the limits of integration if they are not already 
known

 Work out the inner integral for a typical y
 Work out the outer integral.

 Example.



1. Evaluate ∬
❑

❑

❑∫
❑

❑

❑

  Solution:         

∫
2

5

xy dx=y∫
2

5

x dx

              =y[ x
2

2 ]5
2

              =y [52

2 -22

2 ]

              =y [
25
2 -

4
2 ]

             =
21
2 y.

∫2
1
y∫

2

5

xdx dy=∫
1

2
21
2

y dy

           =21
2
∫

1

2

ydy

                 =
21
2

¿]2
1

                         =
21
2

¿-12

2
]

                =
21
2

∗3

2

                 =
63
4

2. Evaluate∫
−1

2

dy dx

            ∫
−1

2

dy dx

                        =∫
❑

❑

❑

∫
❑

❑

❑


